最长递增子序列(LIS)

本文详细探讨了如何使用动态规划解决最长递增子序列问题,对比了不同策略(长度优先、等值长优先、等长小优先),并提供了优化方案,包括使用线段树降低复杂度至O(nlogn)。通过实例和代码演示,帮助读者理解算法核心和应用技巧。
摘要由CSDN通过智能技术生成

问题 - Longest Increasing Subsequence

  • 例题:Given an unsorted array of integers, find the length of longest increasing subsequence.

    • Input: [6,3,4,5,7,1,2]
    • Output: 4
  • complexity

    • O ( n 2 ) O(n^2) O(n2)(常见的有:LCS最长公共子序列、等值长优先、等长小优先)
    • O ( n ∗ log ⁡ n ) O(n*\log{n}) O(nlogn)(常见的有:等值长优先优化、等长小优先优化)

分析

子结构分析

  • 如果考虑搬寝室的分析方法,根据问题规模,可以设计如下子问题:
    • 最简单的问题:【6】的最长递增子序列的长度是多少?
      • 提示:共有多少子序列?
      • 答案:1个
      • 【6】
    • 次简单的问题:【6,3】的最长递增子序列的长度是多少?
      • 提示:共有多少子序列?
      • 答案:2个,
      • 【6】
      • 【3】
    • 稍复杂的问题:【6,3, 4】的最长递增子序列的长度是多少?
      • 提示:共有多少子序列?
      • 答案:2个,
      • 【6】
      • 【3】
      • 【4】
      • 【3,4】
    • 更复杂的问题:【6,3,4,5】呢?
      • 【6】
      • 【3】
      • 【4】
      • 【3,4】
      • 【5】
      • 【3,5】
      • 【4,5】
      • 【3,4,5】

贪心策略

  • 分类、分阶段、贪心

  • 从尾元素看,可以舍弃哪些?

    • 【6,3,4,5】
      • 【6】
      • 【3】
      • 【 4 】 \cancel{【4】} 4
      • 【3,4】
      • 【 5 】 \cancel{【5】} 5
      • 【 3 , 5 】 \cancel{【3,5】} 35
      • 【 4 , 5 】 \cancel{【4,5】} 45
      • 【3,4,5】
      • 长度优先策略:尾元素的相同,则保留当前长度较大的序列,因为发展潜力是一样的

    • 【6,3,4,5】
      • 【 6 】 \cancel{【6】} 6
      • 【 5 】 \cancel{【5】} 5
      • 【 4 】 \cancel{【4】} 4
      • 【3】
      • 【 3 , 5 】 \cancel{【3,5】} 35
      • 【 4 , 5 】 \cancel{【4,5】} 45
      • 【3,4】
      • 【3,4,5】
      • 等长小优先策略:当前长度相同的序列,则保留尾元素较小的序列,因为发展潜力更大

算法

长度优先 — 同值长优先

  • 元素数组 a = [ 0 \xcancel0 0 ,6,3,4,5,7,1,2]
  • 值的特征:1,2,3,4,5,6,7
  • dp[i]定义:值为 i i i 的元素结尾的序列的最大长度
  • 注意 i i i 即是dp的下标,也是元素值
  • dp初始值:[ 0 \xcancel0 0 ,0,0,0,0,0,0,0]
  • 递推过程
    d p 0      d p 1      d p 2      d p 3      d p 4      d p 5      d p 6      d p 7 \quad \quad\quad \quad dp_0\;\;dp_1\;\;dp_2\;\;dp_3\;\;dp_4\;\;dp_5\;\;dp_6\;\;dp_7 dp0dp1dp2dp3dp4dp5dp6dp7 初 始 值 : [    0 , 0 , 0 , 0 , 0 , 0 , 0 , 0    ] 初始值:[\;\xcancel0,\quad0,\quad0,\quad0,\quad0,\quad0 ,\quad0 ,\quad0\; ] [0 ,0,0,0,0,0,0,0]    a 1 = 6 : [    0 , 0 , 0 , 0 , 0 , 0 , 1 , 0    ] \;a_1=6:[\;\xcancel0,\quad0,\quad0,\quad0,\quad0,\quad0 ,\quad\color{red}1,\quad\color{black}0\; ] a1=6[0 ,0,0,0,0,0,1,0]    a 2 = 3 : [    0 , 0 , 0 , 1 , 0 , 0 , 1 , 0    ] \;a_2=3: [\;\xcancel0,\quad0,\quad0,\quad\color{red}1,\quad\color{black}0,\quad0 ,\quad1 ,\quad0\; ] a2=3[0 ,0,0,1,0,0,1,0]    a 3 = 4 : [    0 , 0 , 0 , 1 , 2 , 0 , 1 , 0    ] \;a_3=4:[\;\xcancel0,\quad0,\quad0,\quad1,\quad\color{red}2,\quad\color{black}0 ,\quad1 ,\quad0\; ] a3=4[0 ,0,0,1,2,0,1,0]    a 4 = 5 : [    0 , 0 , 0 , 1 , 2 , 3 , 1 , 0    ] \;a_4=5:[\;\xcancel0,\quad0,\quad0,\quad1,\quad2,\quad\color{red}3 ,\quad\color{black}1 ,\quad0\; ] a4=5[0 ,0,0,1,2,3,1,0]    a 5 = 7 : [    0 , 0 , 0 , 1 , 2 , 3 , 1 , 4    ] \;a_5=7: [\;\xcancel0,\quad0,\quad0,\quad1,\quad2,\quad3 ,\quad1 ,\quad\color{red}4\; ] a5=7[0 ,0,0,1,2,3,1,4]    a 6 = 1 : [    0 , 1 , 0 , 1 , 2 , 3 , 1 , 4    ] \;a_6=1:[\;\xcancel0,\quad\color{red}1,\quad\color{black}0,\quad1,\quad2,\quad3 ,\quad1 ,\quad4\; ] a6=1[0 ,1,0,1,2,3,1,4]    a 7 = 2 : [    0 , 1 , 2 , 1 , 2 , 3 , 1 , 4    ] \;a_7=2:[\;\xcancel0,\quad1,\quad\color{red}2,\quad\color{black}1,\quad2,\quad3 ,\quad1 ,\quad4\; ] a7=2[0 ,1,2,1,2,3,1,4]
  • 状态转移方程
    • d p [ i ] = m a x ( d p [ i ] , 1 + m a x ( d p [ 1 ] , d p [ 2 ] , … , d p [ i − 1 ] ) ) dp[i] = max(dp[i],1+max(dp[1], dp[2], …, dp[i-1] ) ) dp[i]=max(dp[i]1+max(dp[1]dp[2]dp[i1]))
    • 复杂度:O(n^2)
  • 优化
    * 可优化环节: m a x ( d p [ 1 ] , d p [ 2 ] , … , d p [ i − 1 ] ) max(dp[1], dp[2], …, dp[i-1] ) max(dp[1]dp[2]dp[i1]) O ( n ) O(n) O(n)
    * 优化策略:线段树, O ( log ⁡ n ) O(\log{n}) O(logn)
    * 总体复杂度: O ( n ∗ log ⁡ n ) O(n*\log{n}) O(nlogn)

  • 如何求最长序列的长度?

    • 先完成比较
    • 然后 d p [ 1 ] , … , d p [ n ] dp[1],…,dp[n] dp[1]dp[n]中的最大值
  • 如何求最长序列?

    • 从比较过程可以看出,最长序列中的元素的前驱是稳定的
    • 可以增加一个前驱数组pre,pre[k]存储a[k]的前驱
    • pre[1]=0(无前驱)
    • pre[2]=0(无前驱)
    • pre[3]=2
    • pre[4]=3
    • pre[5]=4
    • pre[6]=0(无前驱)
    • pre[7]=6
  • 有重复元素如何处理?

    • 答案:处理逻辑完全相同,但该元素的值对应的最大长度可能发生变化
    • 例如,增加一个元素: a 8 = 6 a_8=6 a8=6
      d p 0      d p 1      d p 2      d p 3      d p 4      d p 5      d p 6      d p 7 \quad \quad\quad \quad dp_0\;\;dp_1\;\;dp_2\;\;dp_3\;\;dp_4\;\;dp_5\;\;dp_6\;\;dp_7 dp0dp1dp2dp3dp4dp5dp6dp7 初 始 值 : [    0 , 0 , 0 , 0 , 0 , 0 , 0 , 0    ] 初始值:[\;\xcancel0,\quad0,\quad0,\quad0,\quad0,\quad0 ,\quad0 ,\quad0\; ] [0 ,0,0,0,0,0,0,0]    a 7 = 2 : [    0 , 1 , 2 , 1 , 2 , 3 , 1 , 4    ] \;a_7=2:[\;\xcancel0,\quad1,\quad\color{red}2,\quad\color{black}1,\quad2,\quad3 ,\quad1 ,\quad4\; ] a7=2[0 ,1,2,1,2,3,1,4]    a 8 = 6 : [    0 , 1 , 2 , 1 , 2 , 3 , 4 , 4    ] \;a_8=6:[\;\xcancel0,\quad1,\quad2,\quad1,\quad2,\quad3 ,\quad\color{red}4 ,\quad\color{black}4\; ] a8=6[0 ,1,2,1,2,3,4,4]
    • pre[8] = 5
  • 元素的值范围比较大如何处理?

    • 离散化
    • 例如 a = [ 1 0 6 , 1 0 3 , 1 0 4 , 1 0 5 , 1 0 9 , 1 , 1 0 2 ] a=[10^6,10^3,10^4,10^5,10^9,1,10^2] a=[1061031041051091102]
    • 按 a = [6,3,4,5,7,1,2],因为相对大小关系一致
  • 示例代码

for(int i = 1; i <= n; ++i){
	for(int j = 0; j < a[i]; ++j){ // j从0开始,表示所有元素都大于0
		if(dp[a[i]] < dp[j]+1){
			dp[a[i]] = dp[j]+1;
			pre[i] = j;
		}
	}
}

另一类“长度优先”

  • dp[i]定义:以下标为 i i i 的元素结尾的序列的最大长度
  • 比较过程
    d p 0      d p 1      d p 2      d p 3      d p 4      d p 5      d p 6      d p 7 \quad \quad\quad \quad dp_0\;\;dp_1\;\;dp_2\;\;dp_3\;\;dp_4\;\;dp_5\;\;dp_6\;\;dp_7 dp0dp1dp2dp3dp4dp5dp6dp7 初 始 值 : [    0 , 0 , 0 , 0 , 0 , 0 , 0 , 0    ] 初始值:[\;\xcancel0,\quad0,\quad0,\quad0,\quad0,\quad0 ,\quad0 ,\quad0\; ] [0 ,0,0,0,0,0,0,0]    a 1 = 6 : [    0 , 1 , 0 , 0 , 0 , 0 , 0 , 0    ] \;a_1=6:[\;\xcancel0,\quad1,\quad0,\quad0,\quad0,\quad0 ,\quad0,\quad0\; ] a1=6[0 ,1,0,0,0,0,0,0]    a 2 = 3 : [    0 , 1 , 1 , 0 , 0 , 0 , 0 , 0    ] \;a_2=3:[\;\xcancel0,\quad1,\quad1,\quad0,\quad0,\quad0 ,\quad0 ,\quad0\; ] a2=3[0 ,1,1,0,0,0,0,0]    a 3 = 4 : [    0 , 1 , 1 , 2 , 0 , 0 , 0 , 0    ] \;a_3=4:[\;\xcancel0,\quad1,\quad1,\quad2,\quad0,\quad0 ,\quad0 ,\quad0\; ] a3=4[0 ,1,1,2,0,0,0,0]    a 4 = 5 : [    0 , 1 , 1 , 2 , 3 , 0 , 0 , 0    ] \;a_4=5:[\;\xcancel0,\quad1,\quad1,\quad2,\quad3,\quad0 ,\quad0 ,\quad0\; ] a4=5[0 ,1,1,2,3,0,0,0]    a 5 = 7 : [    0 , 1 , 1 , 2 , 3 , 4 , 0 , 0    ] \;a_5=7:[\;\xcancel0,\quad1,\quad1,\quad2,\quad3,\quad4 ,\quad0 ,\quad0\; ] a5=7[0 ,1,1,2,3,4,0,0]    a 6 = 1 : [    0 , 1 , 1 , 2 , 3 , 4 , 1 , 2    ] \;a_6=1:[\;\xcancel0,\quad1,\quad1,\quad2,\quad3,\quad4 ,\quad1 ,\quad2\; ] a6=1[0 ,1,1,2,3,4,1,2]    a 7 = 2 : [    0 , 1 , 1 , 2 , 3 , 4 , 1 , 2    ] \;a_7=2:[\;\xcancel0,\quad1,\quad1,\quad2,\quad3,\quad4 ,\quad1 ,\quad2\; ] a7=2[0 ,1,1,2,3,4,1,2]
  • 状态转移方程
    • d p [ i ] = m a x ( d p [ i ] , 1 + m a x ( d p [ 1 ] , d p [ 2 ] , … , d p [ i − 1 ] ) ) dp[i] = max(dp[i],1+max(dp[1], dp[2], …, dp[i-1] ) ) dp[i]=max(dp[i]1+max(dp[1]dp[2]dp[i1]))
    • 复杂度:O(n^2)
    • 无需离散化
  • 示例代码
for(int i = 1; i <= n; ++i){
	for(int j = 0; j < i; ++j){ // j从0开始,表示所有元素都大于0
		if(a[i] > a[j]){
			dp[i] = max(dp[i], dp[j]+1);
			pre[i] = j;
		}
	}
}

值优先 — 等长小优先

  • 元素数组 a = [ 0 , 1 0 6 , 1 0 3 , 1 0 4 , 1 0 5 , 1 0 9 , 1 , 1 0 2 ] a = [\xcancel0,10^6,10^3,10^4,10^5,10^9,1,10^2] a=[0 1061031041051091102]

  • dp[i]定义:长度为 i i i 的递增序列最小尾元素

  • dp初始值:[ 0 \xcancel0 0 ,0,0,0,0,0,0,0]

  • 递推过程
    d p 0        d p 1        d p 2        d p 3        d p 4        d p 5        d p 6        d p 7 \quad \quad\quad \quad dp_0\;\;\;dp_1\;\;\;dp_2\;\;\;dp_3\;\;\;dp_4\;\;\;dp_5\;\;\;dp_6\;\;\;dp_7 dp0dp1dp2dp3dp4dp5dp6dp7 初 始 值 : [    0 , 0 ,    0 ,    0 ,    0 ,    0 ,    0 ,    0    ] 初始值:[\;\xcancel0,\quad0,\;\quad0,\;\quad0,\;\quad0,\;\quad0 ,\;\quad0 ,\;\quad0\; ] [0 ,0,0,0,0,0,0,0]    a 1 = 6 : [    0 ,    1 0 6 ,    0 ,    0 ,    0 ,    0 ,    0 ,    0    ] \;a_1=6:[\;\xcancel0,\;\color{red}10^6,\;\quad\color{black}0,\;\quad0,\;\quad0,\;\quad0 ,\;\quad0,\;\quad0\; ] a1=6[0 ,106,0,0,0,0,0,0]    a 2 = 3 : [    0 ,    1 0 3 ,    0 ,    0 ,    0 ,    0 ,    0 ,    0    ] \;a_2=3:[\;\xcancel0,\;\color{red}10^3,\;\quad\color{black}0,\;\quad0,\;\quad0,\;\quad0 ,\;\quad0 ,\;\quad0\; ] a2=3[0 ,103,0,0,0,0,0,0]    a 3 = 4 : [    0 ,    1 0 3 ,    1 0 4 ,    0 ,    0 ,    0 ,    0 ,    0    ] \;a_3=4:[\;\xcancel0,\;10^3,\;\color{red}10^4,\;\quad \color{black}0,\;\quad0,\;\quad0 ,\;\quad0 ,\;\quad0\; ] a3=4[0 ,103,104,0,0,0,0,0]    a 4 = 5 : [    0 ,    1 0 3 ,    1 0 4 ,      1 0 5 ,    0 ,    0 ,    0 ,    0    ] \;a_4=5:[\;\xcancel0,\;10^3,\;10^4,\;\;\color{red}10^5,\;\quad\color{black}0,\;\quad0 ,\;\quad0 ,\;\quad0\; ] a4=5[0 ,103,104,105,0,0,0,0]    a 5 = 7 : [    0 ,    1 0 3 ,    1 0 4 ,      1 0 5 ,      1 0 9 ,    0 ,    0 ,    0 ] \;a_5=7:[\;\xcancel0,\;10^3,\;10^4,\;\;10^5,\;\;\color{red}10^9 ,\;\quad\color{black}0 ,\;\quad0,\; \quad0] a5=7[0 ,103,104,105,109,0,0,0]    a 6 = 1 : [    0 ,        1 ,      1 0 4 ,      1 0 5 ,      1 0 9 ,    0 ,    0 ,    0 ] \;a_6=1:[\;\xcancel0,\;\;\;\color{red}1,\;\;\color{black}10^4,\;\;10^5,\;\;10^9 ,\;\quad0 ,\;\quad0,\;\quad0 ] a6=1[0 ,1,104,105,109,0,0,0]    a 7 = 2 : [    0 ,        1 ,      1 0 2 ,      1 0 5 ,      1 0 9 ,    0 ,    0 ,    0 ] \;a_7=2:[\;\xcancel0,\;\;\;1,\;\;\color{red}10^2,\;\;\color{black}10^5,\;\;10^9 ,\;\quad0 ,\;\quad0,\; \quad0] a7=2[0 ,1,102,105,109,0,0,0]

  • 新元素的作用

    • 要么新增一个长度为len+1的序列(len是此前的最大长度)
    • 要么可以更新某个长度的最后一个元素的值(使之更小)
    • 要么和现有的某个长度尾元素等值(更新与否对结果无影响)
  • dp数组的特征

    • 递增
    • 在递推过程中,记录在dp数组中的各元素能否构成一个上升子序列?答:不一定能。因为出现的先后次序是不确定的。
  • 状态转移方程

    • 设dp[j] < a[i] 且j是最大的,则if( j < len ) dp[j+1] =a[i]; else dp[++len] = a[i];
    • 即:寻找第1个比a[i]小的数的下标
    • 复杂度:O(n^2)
  • 优化

    • 可优化环节:寻找最小的大于等于a[i]的dp数组下标
    • 优化策略:dp有序,故可二分查找, O ( log ⁡ n ) O(\log{n}) O(logn)
    • 总体复杂度: O ( n ∗ log ⁡ n ) O(n*\log{n}) O(nlogn)
  • 如何求最长序列的长度?

    • 先完成递推
    • len就是最大长度
  • 如何求最长序列?

    • 从递推过程可以看出,最长序列中的元素的前驱是稳定的
    • 可以增加一个前驱数组pre,pre[k]存储a[k]的前驱的在a中的下标
    • pre[1]=0(无前驱)
    • pre[2]=0(无前驱)
    • pre[3]=2
    • pre[4]=3
    • pre[5]=4
    • pre[6]=0(无前驱)
    • pre[7]=6
  • 示例代码

dp[1] = a[1], len = 1;
for(int i = 2; i <= n; ++i){
	if(a[i]>dp[len]) dp[++len] = a[i];
	else *lower_bound(dp+1, dp+len+1, a[i]) = a[i];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jpphy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值