hdu 5418 Victor and World (状压dp)

问题

hdu 5418 Victor and World - https://acm.hdu.edu.cn/showproblem.php?pid=5418

分析

参考

状态定义

  • d p [ s ] [ i ] dp[s][i] dp[s][i] s s s 为曾到达过的城市的下标的映射, i i i 为最后一个到达的城市的下标
  • 状态转移
    d p [ s ∣ ( 1 < < ( j − 1 ) ) ] [ j ] = m a x ( d p [ s ∣ ( 1 < < ( j − 1 ) ) ] [ j ] , d p [ s ] [ i ] + g [ i ] [ j ] ) dp[s | (1<< (j-1))][j]=max(dp[s | (1<< (j-1))][j],dp[s][i]+g[i][j]) dp[s(1<<(j1))][j]=max(dp[s(1<<(j1))][j]dp[s][i]+g[i][j])
  • g [ i ] [ j ] ) g[i][j]) g[i][j]) i i i j j j 之间的最优解,通过 F l o y d Floyd Floyd 算法求解
  • 在扩展过程中,不必保证每次扩展的路径是在集合内部,否则复杂度较高 O ( n 3 ⋅ 2 n ) O(n^3\cdot 2^n) O(n32n) ~ O ( n 4 ⋅ 2 n ) O(n^4\cdot 2^n) O(n42n)

代码

集合外扩展【265MS】

/* hdu 5418 Victor and World 状压dp */
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int MXS = (1<<16)+5;
const int MXN = 20;
int N, M, g[MXN][MXN], dp[MXS][MXN], c[MXS];
int main(){
	int t, T = 0, S, u, v, w;
	for(int i = 0; i < 16; ++i) c[1<<i] = i+1;
	scanf("%d", &t);
	while(t--){
		memset(g, inf, sizeof g);
		memset(dp, inf, sizeof dp);
		scanf("%d%d", &N, &M);
		S =  (1<<N)-1;		
		for(int i = 1; i <= N; ++i) g[i][i] = 0;
		while(M--){
			scanf("%d%d%d", &u, &v, &w);
			g[u][v] = g[v][u] = min(g[u][v], w);
		}
		for(int k = 1; k <= N; ++k) // Floyd
			for(int i = 1; i <= N; ++i)
				for(int j = 1; j <= N; ++j) 
					g[i][j] = min(g[i][j], g[i][k]+g[k][j]); // 0x3f3f3f3f的影响

		dp[1][1] = 0;
		for(int s = 1; s < S; ++s){
			for(int lst=c[-s&s], j = s; j > 0; j &= j-1, lst = c[-j&j]){//枚举集合元素
				if(dp[s][lst] == inf) continue; // 未出现的状态
				for(int cs, nxt, d = S^s; d > 0; d &= d-1){ // 枚举集合外的扩展点
					nxt = c[-d&d], cs = s|(-d&d);
					dp[cs][nxt] = min(dp[cs][nxt], dp[s][lst]+g[lst][nxt]);			
				}
			}
		}
		for(int i = 2; i <= N; ++i)
			if(dp[S][1] > dp[S][i]+g[1][i]) dp[S][1] = dp[S][i]+g[1][i];
		printf("%d\n", dp[S][1]);
	}
    return 0;
}

集合内扩展【530MS】

/* hdu 5418 Victor and World 状压dp */
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x7f7f7f7f;
const int MXS = (1<<16)+5;
const int MXN = 20;
int N, M, mp[MXN][MXN], dp[MXS][MXN], c[MXS];
int main(){
	int t, T = 0, S, u, v, w;
	for(int i = 0; i < 16; ++i) c[1<<i] = i+1;
	scanf("%d", &t);
	while(t--){
		scanf("%d%d", &N, &M);
		S =  (1<<N)-1;
		memset(mp, 0x7f, sizeof mp), memset(dp, inf, sizeof dp);
		while(M--){
			scanf("%d%d%d", &u, &v, &w);
			mp[u][v] = mp[v][u] = min(mp[u][v], w);
		}
		dp[1][1] = 0;
		for(int s = 1; s < S; ++s){
			for(int lst=c[-s&s], j = s; j > 0; j &= j-1, lst = c[-j&j]){
				if(dp[s][lst] == inf) continue;
				for(int cs, nxt, d = S^s; d > 0; d &= d-1){
					nxt = c[-d&d], cs = s|(-d&d);
					if(mp[nxt][lst] == inf) continue;
					dp[cs][nxt] = min(dp[cs][nxt], dp[s][lst]+mp[lst][nxt]);
					for(int org = c[-s&s], g = s; g > 0; g &= g-1, org = c[-g&g]){
						if(mp[nxt][org] == inf) continue;
						dp[cs][org] = min(dp[cs][org], dp[cs][nxt]+mp[nxt][org]);
					}
				}
			}
		}
		for(int i = 2; i <= N; ++i){
			if(mp[1][i] == inf) continue;
			if(dp[S][1] > dp[S][i]+mp[1][i]) dp[S][1] = dp[S][i]+mp[1][i];
		}
		printf("%d\n", dp[S][1]);
	}
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jpphy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值