Description
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同
的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最
小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
2<=M<=9,1<=N<=60,1<=T<=1000
Solution
考虑费用流
看到这些带时间的题就要想到把点按时间拆开了。我们把一个技术员拆成n个表示这个技术员第i次修车的时间
手推一下发现等待时间T=t1*n+t2*(n-1)+t3*(n-2)+…tn,即第i辆修对答案的贡献是n-i+1倍的,那么费用乘上即可
Code
#include <stdio.h>
#include <string.h>
#include <queue>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))
#define min(x,y) ((x)<(y)?(x):(y))
const int INF=0x3f3f3f3f;
const int N=20005;
const int E=500005;
struct edge{int x,y,w,c,next;}e[E];
std:: queue<int> que;
int ls[N],edCnt=1;
int dis[N],pre[N];
bool vis[N];
int read() {
int x=0,v=1; char ch=getchar();
for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
return x*v;
}
void addEdge(int x,int y,int w,int c) {
e[++edCnt]=(edge){x,y,w,c,ls[x]}; ls[x]=edCnt;
e[++edCnt]=(edge){y,x,0,-c,ls[y]}; ls[y]=edCnt;
// printf("%d %d %d %d\n", x,y,w,c);
}
int spfa(int st,int ed) {
while (!que.empty()) que.pop();
que.push(st);
fill(dis,31); int inf=dis[st]; dis[st]=0;
fill(vis,0); vis[st]=1;
while (!que.empty()) {
int now=que.front(); que.pop();
for (int i=ls[now];i;i=e[i].next) {
if (e[i].w>0&&dis[now]+e[i].c<dis[e[i].y]) {
dis[e[i].y]=dis[now]+e[i].c;
pre[e[i].y]=i;
if (!vis[e[i].y]) {
que.push(e[i].y);
vis[e[i].y]=1;
}
}
}
vis[now]=0;
}
return dis[ed]!=inf;
}
int modify(int ed) {
int mn=INF,cost=0;
for (int i=ed;pre[i];i=e[pre[i]].x) {
mn=min(mn,e[pre[i]].w);
cost+=e[pre[i]].c;
}
for (int i=ed;pre[i];i=e[pre[i]].x) {
e[pre[i]].w-=mn; e[pre[i]^1].w+=mn;
}
return cost*mn;
}
int mcf(int st,int ed) {
int ret=0;
while (spfa(st,ed)) ret+=modify(ed);
return ret;
}
int main(void) {
int m=read(),n=read();
rep(i,1,n) rep(j,1,m) {
int c=read();
rep(k,1,n) {
addEdge((j-1)*n+k,n*m+i,1,c*k);
}
}
rep(i,1,n*m) {
addEdge(0,i,1,0);
}
rep(i,1,n) addEdge(n*m+i,n*m+n+1,1,0);
printf("%.2lf\n", (double)mcf(0,n*m+n+1)/n);
return 0;
}