LeetCode 300. 最长递增子序列
一、题目详情
原题链接:300. 最长递增子序列
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
进阶:
- 你可以设计时间复杂度为
O(n2)
的解决方案吗? - 你能将算法的时间复杂度降低到
O(n log(n))
吗?
二、动态规划法
本题可以使用动态规划法解决。
dp[i]
的值代表nums
的前i
个值的最长子序列长度。dp[i]
所有元素置 1,含义是每个元素都至少可以单独成为子序列,此时长度都为 1。
设 j∈[0,i)
,考虑每轮计算新 dp[i]
时,遍历 [0,i)
列表区间,做以下判断:
当 nums[i] > nums[j]
时: nums[i]
可以接在 nums[j]
之后(此题要求严格递增),此情况下最长上升子序列长度为 dp[j] + 1
;
当 nums[i] <= nums[j]
时:nums[i]
无法接在 nums[j]
之后,此情况上升子序列不成立,跳过。
即j∈[0,i)
的状态转移方程为:
d
p
[
i
]
=
m
a
x
(
d
p
[
i
]
,
d
p
[
j
]
+
1
)
dp[i] = max(dp[i], dp[j] + 1)
dp[i]=max(dp[i],dp[j]+1)
class Solution {
public int lengthOfLIS(int[] nums) {
if(nums == null || nums.length == 0){
return 0;
}
//动态规划
int max = 1;
int[] dp = new int[nums.length];
for(int i = 0;i < nums.length;i++){
dp[i] = 1;
}
for(int i = 1;i < nums.length;i++){
for(int j = 0;j <= i;j++){
if(nums[i] > nums[j]){
dp[i] = Math.max(dp[i],dp[j] + 1);
max = Math.max(dp[i],max);
}
}
}
return max;
}
}