LeetCode 300. 最长递增子序列

LeetCode 300. 最长递增子序列

一、题目详情

原题链接:300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

进阶:

  • 你可以设计时间复杂度为 O(n2) 的解决方案吗?
  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

二、动态规划法

​ 本题可以使用动态规划法解决。

dp[i]的值代表nums的前i个值的最长子序列长度。dp[i] 所有元素置 1,含义是每个元素都至少可以单独成为子序列,此时长度都为 1。

​ 设 j∈[0,i),考虑每轮计算新 dp[i] 时,遍历 [0,i) 列表区间,做以下判断:

​ 当 nums[i] > nums[j] 时: nums[i] 可以接在 nums[j] 之后(此题要求严格递增),此情况下最长上升子序列长度为 dp[j] + 1
​ 当 nums[i] <= nums[j] 时:nums[i] 无法接在 nums[j] 之后,此情况上升子序列不成立,跳过。

​ 即j∈[0,i)的状态转移方程为:
d p [ i ] = m a x ( d p [ i ] , d p [ j ] + 1 ) dp[i] = max(dp[i], dp[j] + 1) dp[i]=max(dp[i],dp[j]+1)

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums == null || nums.length == 0){
            return 0;
        }
        
        //动态规划
        int max = 1;
        int[] dp = new int[nums.length];
        for(int i = 0;i < nums.length;i++){
            dp[i] = 1;
        }

        for(int i = 1;i < nums.length;i++){
            for(int j = 0;j <= i;j++){
                if(nums[i] > nums[j]){
                    dp[i] = Math.max(dp[i],dp[j] + 1);
                    max = Math.max(dp[i],max);
                }
            }
        }

        return max;
    }
}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值