LeetCode 337. 打家劫舍 III
一、题目详情
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
示例 2:
输入: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
二、动态规划法
本题可以使用动态规划法解决。
dp[node][j]
:这里 node
表示一个结点,以 node
为根结点的树,并且规定了 node
是否偷取能够获得的最大价值。
j = 0
表示 node
结点不偷取;
j = 1
表示 node
结点偷取。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rob(TreeNode root) {
if(root == null){
return 0;
}
int[] values = dfs(root);
return Math.max(values[0],values[1]);
}
public int[] dfs(TreeNode root){
if(root == null){
return new int[2];
}
//深度优先遍历,从底向上开始判断抢劫的value值
int[] left = dfs(root.left);
int[] right = dfs(root.right);
int[] dp = new int[2];
/**
dp[0]表示不偷该节点,偷其子节点
dp[1]表示偷该节点
*/
dp[0] = Math.max(left[0],left[1]) + Math.max(right[0],right[1]);
dp[1] = root.val + left[0] + right[0];
return dp;
}
}