延迟Lotka - Volterra模型的Hopf分岔与稳定性分析及EOQ模型研究
在生态系统和库存管理等领域,数学模型的构建与分析对于理解系统的动态行为至关重要。本文将深入探讨延迟Lotka - Volterra模型的Hopf分岔与稳定性,以及经济订货量(EOQ)模型在不确定环境下的应用。
延迟Lotka - Volterra模型的研究
在生态系统中,疾病在捕食者和猎物种群中的传播是一个重要的研究领域。许多研究仅考虑疾病在捕食者或猎物种群中传播的情况,而本文分析了两种带延迟时间的模型。
模型设定与阈值分析
- 种群分类 :假设存在两种物种,且都存在疾病。种群分为易感动物数量 (S(t)) 和感染且具有传染性的动物数量 (I(t))。对于捕食者 - 猎物系统,猎物种群总数 (x = S + I),捕食者种群总数 (y = S_2 + I_2)。
- 阈值计算 :通过下一代矩阵方法计算出两个流行病学阈值量:
- (R_1 = \frac{\beta_1}{\gamma_1 + d_1 + (1 - a_1)r \frac{d_2}{k a} K_1 + a y^*})
- (R_2 = \frac{\beta_2}{d_2 + \gamma_2})
阈值 (R_1) 在猎物种群中疾病传播时对捕食者 - 猎物系统的行为起重要作用,而阈值 (R_2) 在捕食者种群患病时更为关键。