13、延迟Lotka - Volterra模型的Hopf分岔与稳定性分析及EOQ模型研究

延迟Lotka - Volterra模型的Hopf分岔与稳定性分析及EOQ模型研究

在生态系统和库存管理等领域,数学模型的构建与分析对于理解系统的动态行为至关重要。本文将深入探讨延迟Lotka - Volterra模型的Hopf分岔与稳定性,以及经济订货量(EOQ)模型在不确定环境下的应用。

延迟Lotka - Volterra模型的研究

在生态系统中,疾病在捕食者和猎物种群中的传播是一个重要的研究领域。许多研究仅考虑疾病在捕食者或猎物种群中传播的情况,而本文分析了两种带延迟时间的模型。

模型设定与阈值分析
  • 种群分类 :假设存在两种物种,且都存在疾病。种群分为易感动物数量 (S(t)) 和感染且具有传染性的动物数量 (I(t))。对于捕食者 - 猎物系统,猎物种群总数 (x = S + I),捕食者种群总数 (y = S_2 + I_2)。
  • 阈值计算 :通过下一代矩阵方法计算出两个流行病学阈值量:
    • (R_1 = \frac{\beta_1}{\gamma_1 + d_1 + (1 - a_1)r \frac{d_2}{k a} K_1 + a y^*})
    • (R_2 = \frac{\beta_2}{d_2 + \gamma_2})
      阈值 (R_1) 在猎物种群中疾病传播时对捕食者 - 猎物系统的行为起重要作用,而阈值 (R_2) 在捕食者种群患病时更为关键。
猎物患病模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值