Lotka-Volterra竞争模型

一、生态学Tips

1、生态学系统是复杂适应性系统;
2、生态学根植于博物学;
3、不可忽略进化论;
4、生态学事关大自然;
5、了解一点哲学;
6、生态学是有用的科学;
7、生态学不是万能的;
8、类社会科学的学科范式;
9、参考物理学而非工程学来理解生态学的生态位;
10、数学很重要。

二、物种的竞争

1、Lotka-Volterra竞争模型

假设有一草地,其共同的“捕食者”是兔子和羊,且二者在假定的草地生态系统中存在竞争关系
有:
{ 对兔子( N 1 ) : d N 1 d t = r 1 ⋅ N 1 ( 1 − N 1 K 1 ) 对羊有( N 2 ) : d N 2 d t = r 2 ⋅ N 2 ( 1 − N 2 K 2 ) \begin{cases} 对兔子(N_{1}):\frac{\text{d}N_{1}}{\text{d}t}=r_{1}\cdot N_{1}(1-\frac{N_{1}}{K_{1}})\\ 对羊有(N_{2}):\frac{\text{d}N_{2}}{\text{d}t}=r_{2}\cdot N_{2}(1-\frac{N_{2}}{K_{2}}) \end{cases} {对兔子(N1:dtdN1=r1N1(1K1N1对羊有(N2:dtdN2=r2N2(1K2N2
为了将两个方程联系起来,引入变量 M M M,表示食草动物动物的食草量,有:
M 羊 = α ⋅ M 兔 M_{羊}=\alpha\cdot M_{兔} M=αM
因此可得到两个相对竞争系数,分别是羊对兔 α 1 ← 2 \alpha_{1\leftarrow2} α12兔对羊 α 2 ← 1 \alpha_{2\leftarrow1} α21 ,以及两个种内的密度制约系数 α 1 ← 1 \alpha_{1\leftarrow1} α11 α 2 ← 2 \alpha_{2\leftarrow2} α22,带入两个式子可得:
{ d N 1 d t = r 1 ⋅ N 1 ( 1 − α 1 ← 1 N 1 K 1 − α 1 ← 2 N 2 K 1 ) d N 2 d t = r 2 ⋅ N 2 ( 1 − α 2 ← 2 N 2 K 2 − α 2 ← 1 N 1 K 2 ) \begin{cases} \frac{\text{d}N_{1}}{\text{d}t}=r_{1}\cdot N_{1}(1-\alpha_{1\leftarrow1}\frac{N_{1}}{K_{1}}-\alpha_{1\leftarrow2}\frac{N_{2}}{K_{1}})\\ \frac{\text{d}N_{2}}{\text{d}t}=r_{2}\cdot N_{2}(1-\alpha_{2\leftarrow2}\frac{N_{2}}{K_{2}}-\alpha_{2\leftarrow1}\frac{N_{1}}{K_{2}})\\ \end{cases} {dtdN1=r1N11α11K1N1α12K1N2dtdN2=r2N21α22K2N2α21K2N1
此即Lotka-Volterra竞争模型

2、 N 1 、 N 2 N_{1}、N_{2} N1N2 的关系

为了探究 N 1 、 N 2 N_{1}、N_{2} N1N2 的关系,令 d N 1 d t = 0 \frac{\text{d}N_{1}}{\text{d}t}=0 dtdN1=0 ,解得:
{ N 1 = 0 1 − α 1 ← 1 N 1 K 1 − α 1 ← 2 N 2 K 1 = 0 \begin{cases} N_{1}=0\\ 1-\alpha_{1\leftarrow1}\frac{N_{1}}{K_{1}}-\alpha_{1\leftarrow2}\frac{N_{2}}{K_{1}}=0 \end{cases} {N1=01α11K1N1α12K1N2=0
且:有 K 1 > 1 K_{1}>1 K1>1,所以,等式两边同时乘 K 1 K_{1} K1 得:
K 1 − α 1 ← 1 ⋅ N 1 − α 1 ← 2 ⋅ N 2 = 0 K_{1}-\alpha_{1\leftarrow1}\cdot N_{1}-\alpha_{1\leftarrow2}\cdot N_{2}=0 K1α11N1α12N2=0
整理得:
K 1 α 1 ← 2 − α 1 ← 1 ⋅ N 1 α 1 ← 2 = N 2 \frac{K_{1}}{\alpha_{1\leftarrow2}}-\frac{\alpha_{1\leftarrow1}\cdot N_{1}}{\alpha_{1\leftarrow2}}=N_{2} α12K1α12α11N1=N2
因为: K 1 α 1 ← 2 、 α 1 ← 1 α 1 ← 2 \frac{K_{1}}{\alpha_{1\leftarrow2}}、\frac{\alpha_{1\leftarrow1}}{\alpha_{1\leftarrow2}} α12K1α12α11 为常数,所以 N 1 、 N 2 N_{1}、N_{2} N1N2 的关系是二维坐标系上的一条直线。

3、竞争结果

当忽略两个种群内部同种个体间的相互关系 α 1 → 1 \alpha_{1\rightarrow1} α11 α 2 → 2 \alpha_{2\rightarrow2} α22同时将 α 1 → 2 \alpha_{1\rightarrow2} α12 α 2 → 1 \alpha_{2\rightarrow1} α21简写为 α 12 \alpha_{12} α12 α 21 \alpha_{21} α21,方程可表示为:
{ N 1 ′ = r 1 ⋅ N 1 ( 1 − N 1 K 1 − α 12 N 2 K 1 ) N 2 ′ = r 2 ⋅ N 2 ( 1 − N 2 K 2 − α 21 N 1 K 2 ) \begin{cases} N_{1}'=r_{1}\cdot N_{1}(1-\frac{N_{1}}{K_{1}}-\alpha_{12}\frac{N_{2}}{K_{1}})\\ N_{2}'=r_{2}\cdot N_{2}(1-\frac{N_{2}}{K_{2}}-\alpha_{21}\frac{N_{1}}{K_{2}})\\ \end{cases} {N1=r1N11K1N1α12K1N2N2=r2N21K2N2α21K2N1
当生境内完全被 N 1 N_{1} N1 或被 N 2 N_{2} N2 占据时,针对两个式子,可分别在坐标系上获取两个点:
{ 兔 ( N 1 ) : ( K 1 , 0 ) , ( 0 , K 1 α 12 ) 羊 ( N 2 ) : ( 0 , K 2 ) , ( K 2 α 21 , 0 ) \begin{cases} 兔(N_{1}):(K_{1},0),(0,\frac{K_{1}}{\alpha_{12}})\\ 羊(N_{2}):(0,K_{2}),(\frac{K_{2}}{\alpha_{21}},0) \end{cases} {(N1)(K1,0),(0,α12K1)(N2)(0,K2),(α21K2,0)
分别针对两个种群绘图,根据Logistic方程,分别获得两组矢量关系图(箭头方向表示种群大小变化方向)。
在这里插入图片描述

将两组矢量关系图结合,即可推测四种不同的竞争结果。

(1) N 1 N_{1} N1 兔获胜

K 1 > K 2 α 21 K_{1}>\frac{K_{2}}{\alpha_{21}} K1>α21K2 K 1 α 12 > K 2 \frac{K_{1}}{\alpha_{12}}>K_{2} α12K1>K2时:
在这里插入图片描述

(2) N 2 N_{2} N2 羊获胜

K 2 > K 1 α 12 K_{2}>\frac{K_{1}}{\alpha_{12}} K2>α12K1 K 2 α 21 > K 1 \frac{K_{2}}{\alpha_{21}}>K_{1} α21K2>K1时:
在这里插入图片描述

(3)稳定共存(一个平衡点)

K 2 α 21 > K 1 \frac{K_{2}}{\alpha_{21}}>K_{1} α21K2>K1 K 1 α 12 > K 2 \frac{K_{1}}{\alpha_{12}}>K_{2} α12K1>K2时:
在这里插入图片描述

(4)无法预测(无平衡点)

K 1 > K 2 α 21 K_{1}>\frac{K_{2}}{\alpha_{21}} K1>α21K2 K 2 > K 1 α 12 K_{2}>\frac{K_{1}}{\alpha_{12}} K2>α12K1时:
在这里插入图片描述

4、多种群的竞争关系

现在,我们获得了两个种群的竞争关系,并预测了四种可能的情形,那多个种群的竞争关系是如何的呢?
在前面的推到中,我们忽略了种群内部的同种个体的相互关系 α 11 、 α 22 \alpha_{11}、\alpha_{22} α11α22),现将其重新加入到(物种数 n = 2 n=2 n=2)关系式中:
{ d N 1 d t = r 1 N 1 ( 1 − α 11 N 1 K 1 − α 12 N 2 K 1 ) d N 2 d t = r 2 N 2 ( 1 − α 22 N 2 K 2 − α 21 N 21 K 2 ) \begin{cases} \frac{\text{d}N_{1}}{\text{d}t}=r_{1}N_{1}(1-\alpha_{11}\frac{N_{1}}{K_{1}} -\alpha_{12}\frac{N_{2}}{K_{1}})\\ \frac{\text{d}N_{2}}{\text{d}t}=r_{2}N_{2}(1-\alpha_{22}\frac{N_{2}}{K_{2}} -\alpha_{21}\frac{N_{21}}{K_{2}}) \end{cases} {dtdN1=r1N1(1α11K1N1α12K1N2)dtdN2=r2N2(1α22K2N2α21K2N21)
通过观察两物种的关系式可发现,括号内的各物种关系可以以和的形式表示,即:
∑ j = 1 n α i j N j K i \sum_{j=1}^{n}{\alpha_{ij}\frac{N_{j}}{K_{i}}} j=1nαijKiNj
由此可知,在一个含 n n n 个物种的生境内(物种丰度为 n n n), i i i 个物种种群大小变化的函数关系为:
d N i d t = r i N i ( 1 − ∑ j = 1 n α i j N j K i ) \frac{\text{d}N_{i}}{\text{d}t}=r_{i}N_{i}(1-\sum_{j=1}^{n}{\alpha_{ij}\frac{N_{j}}{K_{i}}}) dtdNi=riNi(1j=1nαijKiNj)
观察函数关系式可发现两个重要的状态变量(见Module 1): α i j 、 n \alpha_{ij}、n αijn,分别表示物种丰富度 n n n)和种间或种内交互系数 α i j \alpha_{ij} αij)。
Module 1

以理想气体方程为例:
PV=nRT
通过只描述气体状态的状态变量,例如p为压强(Pa),V为气体体积(),来描述空间内的气体。

我们是否可以通过这两个状态变量类模拟群落的动态竞争关系呢?
具体内容可参考胡脊梁的文章,DOI: 10.1126/science.abm7841

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Odd_guy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值