统计-随机变量的数字特征

第四章 随机变量的数字特征

数学期望

例子
成绩0分1分2分3分4分5分
人数25815128
频率2/505/508/5015/5012/508/50

平均成绩为

(0×2+1×5+2×8+3×15+4×12+5×8)/50=3.08

加权平均

250 2 50 +1× 550 5 50 +2× 850 8 50 +3× 1550 15 50 +4× 1250 12 50 +5× 850 8 50 =3.08

离散型随机变量的数学期望

定义

设离散型随机变量X的分布律为

P{X= xk x k }= pk p k (k=1,2,…)

若无穷极数 k=1xkpk ∑ k = 1 ∞ x k p k 绝对收敛,即 k=1|xk|pk ∑ k = 1 ∞ | x k | p k 收敛则称这个级数为随机变量X的数学期望,简称期望或均值。记作E(X)

E(X)=k=1xkpk E ( X ) = ∑ k = 1 ∞ x k p k

一个随机变量的数学期望是一个常数,它表示随机变量取值的一个平均,并不是算术平均,而是以概率为权重的加权平均。

为什么要绝对收敛?

因为绝对收敛级数具有交换律,即级数的各项任意重新排列后,级数的和不会变,从而保证任意交换xi的位置,不会改变X的数学期望。

如果此级数发散或者条件收敛,则X的数学希望就不存在。

如果X只取有限个值,则此级数只有有限项相加,它一定绝对收敛。

计算
Xx1 x2 x3 … xn …
pkP1 p2 p3 … pn …

将分布律中X的歌取值 xi x i 与对应概率 pi p i 相乘,再将乘积相加,得到X的期望

E(X)= x1p1+x2p2++xnpn+... x 1 p 1 + x 2 p 2 + … + x n p n + . . .

0-1分布数学期望

E(X)=0×(1-p)+1×p=p

二项分布的数学期望

P{X=k}= \Cknpk(1p)nk \C n k p k ( 1 − p ) n − k (k=0,1,…,n)

E(X)= nk=0k·pk ∑ k = 0 n k · p k = nk=1k·\Cknpk(1p)k1 ∑ k = 1 n k · \C n k p k ( 1 − p ) k − 1

​ = pnk=1k·nk\Ck1n1pk1(1p)nk p ∑ k = 1 n k · n k \C n − 1 k − 1 p k − 1 ( 1 − p ) n − k

​ = npnk=1\Ck1n1pk1(1p)nk n p ∑ k = 1 n \C n − 1 k − 1 p k − 1 ( 1 − p ) n − k

​ = np[p+(1p)]n n p [ p + ( 1 − p ) ] n

​ =np

\Cmn=nm\Cm1n1 \C n m = n m \C n − 1 m − 1

牛顿二项式: (a+b)n ( a + b ) n = nr=0\Crnanrbr ∑ r = 0 n \C n r a n − r b r

泊松分布的数学期望

pk p k =P{X=k}= λk!eλk(λ>0) λ k ! e − λ k ( λ > 0 ) (k=1,2,…)

E(X)= k=1k·λkk!eλ ∑ k = 1 ∞ k · λ k k ! e − λ

​ = eλk=1λk(k1)! e − λ ∑ k = 1 ∞ λ k ( k − 1 ) !

​ = eλλk=1λk1(k1)! e − λ λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) !

​ = eλλeλ e − λ λ e λ

​ =e

k=0λkk!=eλ ∑ k = 0 ∞ λ k k ! = e λ

连续性随机变量的数学期望

定义

设连续性随机变量X的概率密度为f(x),若反常积分 +xf(x)dx ∫ − ∞ + ∞ x f ( x ) d x 绝对收敛,即 +|x|f(x)dx ∫ − ∞ + ∞ | x | f ( x ) d x 收敛或者<+ ,则称这个积分为随机变量X的数学期望简称期望,记作E(X)

即 E(X)= +xf(x)dx ∫ − ∞ + ∞ x f ( x ) d x

连续性随机变量的数学期望是它的概率密度f(x)与x的乘积在整个实数域上的积分

均为分布的数学期望

$$ f(x)=\left{

\begin{aligned}

&{1 \over {b-a}},{a < x < b} \

&0, 其他

\end{aligned}

\right.
$$

E(X)= +xf(x)dx ∫ − ∞ + ∞ x f ( x ) d x = ba1badx ∫ a b 1 b − a d x = 1babaxdx 1 b − a ∫ a b x d x

​ = 1ba[x22]ba 1 b − a [ x 2 2 ] a b

​ = 1ba·b2a22 1 b − a · b 2 − a 2 2

​ = b+a2 b + a 2

正态分布的数学期望

f(x)=12πe(xμ)22σ2 f ( x ) = 1 2 π e − ( x − μ ) 2 2 σ 2

E(X)= +x12πe(xμ)22σ2 ∫ − ∞ + ∞ x 1 2 π e − ( x − μ ) 2 2 σ 2

​ = 1π+xe(xμ2σ)2d(xμ2σ) 1 π ∫ − ∞ + ∞ x e − ( x − μ 2 σ ) 2 d ( x − μ 2 σ ) 令z= xμ2σ x − μ 2 σ

​ = 1π+(2σz+μ)ez2dz 1 π ∫ − ∞ + ∞ ( 2 σ z + μ ) e − z 2 d z 对称性 +zez2dz ∫ − ∞ + ∞ z e − z 2 d z =0

​ = μπ+ez2dz μ π ∫ − ∞ + ∞ e − z 2 d z

​ = μππ μ π π

​ = μ μ

均值为图像对称轴的很坐标

推出:

一般的,若X的概率密度f(x)的图形关于直线x=a对称,即

f(a-x)=f(a+x) ( <x<+ − ∞ < x < + ∞ )

则X的数学期望必为a

指数分布的数学期望

f(x)={λeλxx>00,x0(λ>0) f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 ( 常 数 λ > 0 )

E(x)= +xf(x)dx ∫ − ∞ + ∞ x f ( x ) d x

​ = +0xλeλxdx ∫ 0 + ∞ x λ e − λ x d x $

​ = λx1λeλx+0eλxdx λ x − 1 λ e − λ x − ∫ 0 + ∞ e − λ x d x 部分积分法

​ = [xeλx|+0(1λeλx)|+0] − [ x e − λ x | 0 + ∞ − ( − 1 λ e − λ x ) | 0 + ∞ ]

​ = [(00)+1λeλx|+0] − [ ( 0 − 0 ) + 1 λ e − λ x | 0 + ∞ ] limx+xeλx=limx+xeλx=limx+1λx=0 lim x → + ∞ x e − λ x = lim x → + ∞ x e λ x = lim x → + ∞ 1 λ x = 0

​ = 1λ(01) − 1 λ ( 0 − 1 )

​ = 1λ 1 λ

柯西分布的数学期望

为正无穷,所以不存在

随机变量的函数的期望

离散型

设X是离散型随机变量,其分布律为p{X= xk x k }= pk p k (k=1,2,…)

设Y是随机变量X的函数:Y=g(X)

则E(Y)=E[g(X)]= k=1g(xk)pk ∑ k = 1 ∞ g ( x k ) p k 要求绝对收敛

连续性

设X是连续性随机变量,其概率密度为f(x),设Y是随机变量X的函数:Y=g(X),其中g是连续函数

则E(Y)=E[g(x)]= +g(x)f(x)dx ∫ − ∞ + ∞ g ( x ) f ( x ) d x 要求绝对收敛

这个定理的意义在于:当我们求E(Y)时,不必求出Y=g(X)的概率密度,只需利用X的概率密度f(x)即可。

二维随机变量的期望

离散型

设二维离散型随机变量(X,Y)的分布律为P{X= Xi X i ,Y= yj y j }= pij p i j (i,j=1,2,…)

则函数Z=g(X,Y)的数学期望

E(Z)=E(g(X,Y))= j=1i=1g(xi,yj)pij ∑ j = 1 ∞ ∑ i = 1 ∞ g ( x i , y j ) p i j 要求绝对收敛

连续性

设二维连续性随机变量(X,Y)的概率密度为f(x,y),则函数Z=g(X,Y)的数学期望

E(Z)=E(g(X,Y))= ++g(x,y)f(x,y)dxdy ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y 要求绝对收敛

例子

设随机变量(X,Y)的概率密度为

f(x,y)=32x3y2,1x<y<x,x>10, f ( x , y ) = { 3 2 x 3 y 2 , 1 x < y < x , x > 1 0 , 其 他

求数学期望E(Y),E(1/XY)

1.E(Y)

区域在y=1/x,y=x之间

E(Y)= ++yf(x,y)dxdy ∫ − ∞ + ∞ ∫ − ∞ + ∞ y f ( x , y ) d x d y 先对y积分

​ = +1dxx1/xy32x3y2dy ∫ 1 + ∞ d x ∫ 1 / x x y 3 2 x 3 y 2 d y 整理得

​ = 32+11x3dxx1/xy1y2dy 3 2 ∫ 1 + ∞ 1 x 3 d x ∫ 1 / x x y 1 y 2 d y

​ = 32+11x3[lny]|x1/xdx 3 2 ∫ 1 + ∞ 1 x 3 [ l n y ] | 1 / x x d x

​ = 32+11x3(2lnx)dx 3 2 ∫ 1 + ∞ 1 x 3 ( 2 l n x ) d x

​ = 32+1x3lnxdx 3 2 ∫ 1 + ∞ x − 3 l n x d x 分部积分法

​ = 32[lnxx2]+1+1x2dlnx 3 − 2 [ l n x x 2 ] 1 + ∞ − ∫ 1 + ∞ x − 2 d l n x

​ =3/4

数学期望的性质

性质1

常数C的数学期望就是该常数本身,即

E(C)=C

性质2

设X是随机变量,C是常数,则

E(CX)=CE(X)

性质3

设X,Y是随机变量,则

E(X+Y)=E(X)+E(Y)

推论 线性性质

设X1,X2,..,Xn是n个随机变量,C1,C2,..,Cn是n个常数,

E(C1X1+C2X2+…+CnXn)=C1E(X1)+C2E(X2)+…+CnE(Xn)

性质4

设X,Y是相互独立的随机变量则

E(XY)=E(X)E(Y)

方差

例如,三个随机变量X,Y,Z,其分布律为

X0
p1
Y-1 1
p0.5 0.5
Z-100 100
p0.5 0.5

虽然它们的数学期望都是0,但Y的取值分散度大于X,而Z取值的分散程度大于Y

由此可见,我们有必要考虑随机变量与其均值的偏离程度

定义

设X是一个随机变量,若 E[XE(X)]2 E [ X − E ( X ) ] 2 存在,则称之为X的方差

记作D(X)或者Var(X)

D(X) D ( X ) 为标准差或者均方差或者根方差,

记作 σ σ (X)

表示X的取值与其数学期望E(X)的偏离程度。

D(X)较小意味着X的取值比较其中在E(X)附近。

反之,D(X)较大则表示X的取值比较分散。

因此,D(X)是刻画X取值分散程度的一个量,是衡量X的取值分散程度的一个标尺。

计算
离散型

设X是离散型随机变量。X的方差

D(X)= E{[XE(X)]2} E { [ X − E ( X ) ] 2 } = k=1[xkE(X)]2pk ∑ k = 1 ∞ [ x k − E ( X ) ] 2 p k E[g(x)]= k=1g(xk)pk ∑ k = 1 ∞ g ( x k ) p k

连续性

设X是连续性随机变量,其概率密度为f(x)

则X的方差

D(X)= E{[XE(X)]2} E { [ X − E ( X ) ] 2 } = +[xE(X)]2f(x)dx ∫ − ∞ + ∞ [ x − E ( X ) ] 2 f ( x ) d x

重要公式

D(X)=E( X2 X 2 )- [E(X)]2 [ E ( X ) ] 2

0-1分布的方差

E(X)=p

E( X2 X 2 )= 02(1p)+12p 0 2 ( 1 − p ) + 1 2 p =p

D(X)=E( X2 X 2 )- [E(X)]2 [ E ( X ) ] 2 =p- p2 p 2 =p(1-p)

二项分布的方差

D(X)=D(X1+X2+..+Xn)=D(X1)+D(X2)+…+D(Xn)=np(1-p)

泊松分布

E(X)= k=1k·λkk!eλ ∑ k = 1 ∞ k · λ k k ! e − λ = λ λ

E( X2 X 2 ​ )= k=1k2·λkk!eλ ∑ k = 1 ∞ k 2 · λ k k ! e − λ ​

​ = eλλk=1kλk1(k1)! e − λ λ ∑ k = 1 ∞ k λ k − 1 ( k − 1 ) !

​ = eλλk=1[(k1)+1]λk1(k1)! e − λ λ ∑ k = 1 ∞ [ ( k − 1 ) + 1 ] λ k − 1 ( k − 1 ) ! k=1λkk!=eλ ∑ k = 1 ∞ λ k k ! = e λ

​ = eλλ[k=1(k1)λk1(k1)!+k=1λk1(k1)!] e − λ λ [ ∑ k = 1 ∞ ( k − 1 ) λ k − 1 ( k − 1 ) ! + ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! ]

​ = eλλ[λk=2λk2(k2)!+k=1λk1(k1)!] e − λ λ [ λ ∑ k = 2 ∞ λ k − 2 ( k − 2 ) ! + ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! ]

​ = eλλ(λeλ+eλ) e − λ λ ( λ e λ + e λ )

​ = λ(λ+1) λ ( λ + 1 )

D(X)= λ(λ+1)λ2 λ ( λ + 1 ) − λ 2 = λ λ

均匀分布的方差

$$
f(x)=\left{

\begin{aligned}

&{1 \over {b-a}}, {a < x < b} \

&0, 其他

\end{aligned}

\right.
$$

E(X)= (a+b)2 ( a + b ) 2

E( X2 X 2 )= +x2f(x)dx ∫ − ∞ + ∞ x 2 f ( x ) d x = ba1badx ∫ a b 1 b − a d x = 1babax2dx 1 b − a ∫ a b x 2 d x

​ = 1ba[x33]ba 1 b − a [ x 3 3 ] a b

​ = 1ba·b3a33 1 b − a · b 3 − a 3 3

​ = b2+ab+a23 b 2 + a b + a 2 3

D(X)= b2+ab+a23(a+b)24 b 2 + a b + a 2 3 − ( a + b ) 2 4 = 112(ba)2 1 12 ( b − a ) 2

正态分布的方差

f(x)=12πe(xμ)22σ2 f ( x ) = 1 2 π e − ( x − μ ) 2 2 σ 2

E(X)= μ μ

D(X)= [xE(X)]2f(x)dx ∫ [ x − E ( X ) ] 2 f ( x ) d x

D(X)= E{[XE(X)]2} E { [ X − E ( X ) ] 2 } =E [(Xμ)2] [ ( X − μ ) 2 ]

​ = +(xμ)212πσe(xμ)22σ2dx ∫ − ∞ + ∞ ( x − μ ) 2 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x

​ = 1π+(xμ)2e(xμ2σ)2d(xμ2σ) 1 π ∫ − ∞ + ∞ ( x − μ ) 2 e − ( x − μ 2 σ ) 2 d ( x − μ 2 σ ) 令z= xμ2σ x − μ 2 σ

​ = 1π+(2σz2)ez2dz 1 π ∫ − ∞ + ∞ ( 2 σ − z 2 ) e − z 2 d z 分部积分法

​ = (σ2π)[zez2|++ez2dz] ( σ 2 π ) − [ z e − z 2 | − ∞ + ∞ − ∫ − ∞ + ∞ e − z 2 d z ]

​ = (σ2π) ( σ 2 π ) -[(0-0)- π π ]

​ = σ2 σ 2

X~N{ μ,σ2 μ , σ 2 } 两个参数分别是数学期望和方差

指数分布的方差

f(x)={λeλxx>00,x0(λ>0) f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 ( 常 数 λ > 0 )

E(x)= 1λ 1 λ

E( 2x 2 x )= +x2f(x)dx ∫ − ∞ + ∞ x 2 f ( x ) d x

​ = +0x2λeλxdx ∫ 0 + ∞ x 2 λ e − λ x d x $

​ = 1λ2+0(λx)2eλxdx 1 λ 2 ∫ 0 + ∞ ( λ x ) 2 e − λ x d x u= λ λ x

​ = 1λ2+0(u)2eudu 1 λ 2 ∫ 0 + ∞ ( u ) 2 e − u d u Γ(α)=(0+)xα1exdx Γ ( α ) = ∫ 0 ( + ∞ ) x α − 1 e − x d x Γ(n+1)=n! Γ ( n + 1 ) = n !

​ = 1λ2+0Γ(3) 1 λ 2 ∫ 0 + ∞ Γ ( 3 )

​ = 2λ2 2 λ 2

D(X)= 1λ2 1 λ 2

方差的性质

性质1

常数C的方差为零,即D(C)=0

性质2

设X是随机变量,C是常数,则

D(CX)= C2 C 2 D(X),D(X+C)=D(X)

D(CX)≠CD(X)

推论 σ(CX)=|C|σ σ ( C X ) = | C | σ (X)

性质3

设X,Y是随机变量,则

D(X+Y)=D(X)+D(Y)+2Cov(X,Y)

若X,Y相互独立则

D(X+Y)=D(X)+D(Y)

性质4

D(X)=0 P{X=E()X}=1

协方差及相关系数

协方差定义

设(X,Y)是二维随机变量,称

E{[X-E(X)][Y-E(Y)]}

为X与Y的协方差,记为Cov(X,Y)或 σ(X,Y) σ ( X , Y )

相关系数定义

设(X,Y)是二维随机变量,X与Y的协方差

Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}= σ σ (X,Y)

当D(X)和D(Y)不等于0时,定义X与Y的相关系数为

ρXY=Cov(X,Y)D(X)D(Y) ρ X Y = C o v ( X , Y ) D ( X ) D ( Y )

ρXY=σ(X,Y)σ(X)σ(Y) ρ X Y = σ ( X , Y ) σ ( X ) σ ( Y )

协方差计算公式
离散型

设(X,Y)是二维离散型随机变量,其分布律为

pij p i j =P{X= xi x i ,Y= yi y i },i,j=1,2,…

则X与Y的协方差

Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}= +j=1+i=1[xiE(X)][yiE(Y)]pij ∑ j = 1 + ∞ ∑ i = 1 + ∞ [ x i − E ( X ) ] [ y i − E ( Y ) ] p i j

连续性

设(X,Y)是二维连续型随机变量,其概率密度为f(x,y),则X与Y的协方差

Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}= ++[xE(X)][yE(Y)]f(x,y)dxdy ∫ − ∞ + ∞ ∫ − ∞ + ∞ [ x − E ( X ) ] [ y − E ( Y ) ] f ( x , y ) d x d y

协方差的一个计算公式

Cov(X,Y)=E(XY)-E(X)E(Y)

当X与Y相互独立时,E(XY)=E(X)E(Y)

Cov(X,Y)=0

Cov(X,X)=D(X)

协方差性质

1.Cov(X,Y)=Cov(Y,X) 对称性

2.Cov(X,a)=0

3.Cov(aX,bY)=abCov(X,Y)

4.Cov(X±Y,Z)=Cov(X,Z)±Cov(Y,Z) 线性性质

相关系数的性质

1. ρXY ρ X Y = ρYX ρ Y X 对称性

2.| ρXY ρ X Y |≤1 有界性

设X是随机变量,令 X=XE(X)σ(X) X ∗ = X − E ( X ) σ ( X )

则E( X X ∗ )=0 D( X X ∗ )=1

X=XE(X)σ(X) X ∗ = X − E ( X ) σ ( X ) 为X的标准

例如,X~N( μ,σ2 μ , σ 2 ) => X X ∗ = Xμσ X − μ σ ~N(0,1)

引理 设随机变量X和Y的数学期望和方差都存在,

X=XE(X)σ(X) X ∗ = X − E ( X ) σ ( X ) Y=YE(Y)σ(Y) Y ∗ = Y − E ( Y ) σ ( Y )

ρXY=Cov(X,Y) ρ X Y = C o v ( X ∗ , Y ∗ )

3.| ρXY ρ X Y |=1的充分必要条件是存在常数a,b,(a≠0)使得P{Y=aX+b}=1 Y以概率1等于X的线性函数

当a>0时, ρXY ρ X Y =1 ;当a<0时, ρXY ρ X Y =-1

X与Y独立 =>X与Y不相关

矩、协方差矩阵

矩定义

E(X)是X的一阶原点矩

D(X)=E{ [XE(X)]2 [ X − E ( X ) ] 2 }是X的二阶中心距

Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}是X和Y的二阶混合中心距

E( Xk X k )(k=1,2,..)是X的k阶原点矩

D(X)=E{ [XE(X)]k [ X − E ( X ) ] k }(k=1,2,..)是X的k阶中心距

Cov(X,Y)=E{ [XE(X)]k[YE(Y)]l [ X − E ( X ) ] k [ Y − E ( Y ) ] l }(k,l=1,2,..)是X和Y的k+l阶混合中心距

矩的计算公式

离散型

E(Xk)=i=1xkipi E ( X k ) = ∑ i = 1 ∞ x i k p i

E([XE(X)]k)=i=1[xiE(X)]kpi E ( [ X − E ( X ) ] k ) = ∑ i = 1 ∞ [ x i − E ( X ) ] k p i

E{[XE(X)]k[YE(Y)]l} E { [ X − E ( X ) ] k [ Y − E ( Y ) ] l } = j=1i=1[xiE(X)]k[yiE(Y)]lpij ∑ j = 1 ∞ ∑ i = 1 ∞ [ x i − E ( X ) ] k [ y i − E ( Y ) ] l p i j

连续性

E(Xk)=+xkf(x)dx E ( X k ) = ∫ − ∞ + ∞ x k f ( x ) d x

E([XE(X)]k)=+[xE(X)]kf(x)dx E ( [ X − E ( X ) ] k ) = ∫ − ∞ + ∞ [ x − E ( X ) ] k f ( x ) d x

E{[XE(X)]k[YE(Y)]l} E { [ X − E ( X ) ] k [ Y − E ( Y ) ] l } = ++[xE(X)]k[ye(Y)]lf(x,y)dxdy ∫ − ∞ + ∞ ∫ − ∞ + ∞ [ x − E ( X ) ] k [ y − e ( Y ) ] l f ( x , y ) d x d y

E(XkYl)=j=1i=1xkiyljpij=++xkylf(x,y)dxdy E ( X k Y l ) = ∑ j = 1 ∞ ∑ i = 1 ∞ x i k y j l p i j = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x k y l f ( x , y ) d x d y

协方差矩阵

二维随机变量( X1,X2 X 1 , X 2 )有四个二阶中心矩

c11=E{[X1E(X1)][X1E(X1)]}=D(X1) c 11 = E { [ X 1 − E ( X 1 ) ] [ X 1 − E ( X 1 ) ] } = D ( X 1 )

c12=E{[X1E(X1)][X2E(X2)]}=Cov(X1,X2) c 12 = E { [ X 1 − E ( X 1 ) ] [ X 2 − E ( X 2 ) ] } = C o v ( X 1 , X 2 )

c21=E{[X2E(X2)][X1E(X1)]}=Cov(X2,X1) c 21 = E { [ X 2 − E ( X 2 ) ] [ X 1 − E ( X 1 ) ] } = C o v ( X 2 , X 1 )

c22=E{[X2E(X2)][X2E(X2)]}=D(X2) c 22 = E { [ X 2 − E ( X 2 ) ] [ X 2 − E ( X 2 ) ] } = D ( X 2 )

它们构成的矩阵

C={c11c21c12c22} C = { c 11 c 12 c 21 c 22 }

称为( X1,X2 X 1 , X 2 ​ )的协方差矩阵

n维随机变量( X1,X2,,Xn X 1 , X 2 , … , X n )的协方差矩阵为

C=c11c21cn1c12c22cn2c1nc2ncnn C = { c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n }

cii=D(Xi) c i i = D ( X i )

cij=Cov(Xi,Yj) c i j = C o v ( X i , Y j )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值