由于使用py3.5编译的caffe,运行py-faster-rcnn时出现了解决不了的错误,因此最终我使用了py2.7编译并成功运行了,请参考
https://blog.csdn.net/zhangzm0128/article/details/71698880
如果遇到compute_481错误的,我下面有提到解决方法
py3.5编译caffe正文:
要在VS下使用CUDA,必须先安装好vs,再安装CUDA,不然
C:\ProgramFiles(x86)\MSBuild\Microsoft.Cpp\v4.0\V140\BuildCustomizations目录下会没有CUDA 10.0.props,也就不能对CUDA进行编译了,同时VS下也不能新建CUDA的文件。
安装VS时,要勾选c++,其他的看需要

CUDA和cuDNN的安装方法可参考:https://blog.csdn.net/qq_37296487/article/details/83028394
可跳过
也可参考官方的cuDNN的安装方法并配置VS
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-window

本文详细介绍了在Visual Studio 2015和Python3.5环境下,如何安装CUDA10.0、cuDNN以及编译运行caffe。过程中遇到的‘compute_481’错误及其解决方案,以及Python环境配置、CUDA和cuDNN的安装步骤和注意事项。最后提到了在VS中编译caffe的图形化cmake方法。
最低0.47元/天 解锁文章
2213

被折叠的 条评论
为什么被折叠?



