互联网真实业务揭露:短视频篇

每日系统一设计-短视频篇,只为揭露真实互联网业务的架构逻辑

预告下一篇:拼团篇(拼好饭,拼多多)

如果我要开发一个短视频应用,首先要明确短视频应用的产品需求:

需求

1. 核心功能需求

1. 视频创作与发布
- 支持15秒-3分钟的短视频拍摄
- 提供基础视频编辑功能(剪辑、滤镜、特效、音乐)
- 支持视频封面选择和编辑
- 支持添加话题标签和位置信息
- 支持设置视频公开/私密权限
- 支持草稿箱功能

2. 视频浏览与互动
- 支持上下滑动切换视频
- 支持双击点赞、评论、分享
- 支持视频收藏功能
- 提供"推荐"和"关注"两个内容流
- 支持视频搜索功能
- 支持观看历史记录

3. 社交功能
- 用户关注/粉丝机制
- 私信聊天功能
- 评论回复与互动
- 用户主页个性化
- 内容分享到其他平台

2. 高级功能需求

1. 创作者中心
- 创作者数据分析
- 粉丝画像分析
- 热门话题推荐
- 创作灵感推荐
- 视频数据洞察
- 收益统计与提现

2. 直播功能
- 支持开启直播
- 直播礼物打赏
- 直播互动功能
- 直播回放功能
- PK对战功能
- 直播预约功能

3. 商业化功能
- 短视频带货
- 广告投放系统
- 商家入驻系统
- 达人合作平台
- 数据营销系统
- 商业化数据分析

3. 用户体验需求

  1. 智能推荐
    基于用户兴趣和行为的个性化推荐
    考虑时间、热度、质量等多维度因素

  2. 智能防护
    未成年人保护
    内容分级
    时间管理
    隐私保护

  3. 互动体验
    趣味性互动道具
    实时互动特效
    互动游戏
    社交玩法
    `

4. 运营需求

 1. 内容运营

    话题活动策划
     活动数据分析
     内容质量管理
     热点话题管理


 2. 用户运营

     用户成长体系
     积分奖励机制
     等级特权系统
     社区荣誉体系


 3. 社区运营

     社区规则制定
     优质内容激励
     违规处理机制
     用户反馈处理

5. 技术需求

1. 性能要求
- 视频加载时间<1秒
- 上传成功率>99.9%
- 服务可用性>99.99%
- CDN覆盖率>95%

2. 安全要求
- 用户数据加密存储
- 防刷防攻击机制
- 内容安全审核
- 版权保护机制

3. 运维要求
- 系统监控告警
- 性能监控分析
- 容量规划
- 灾备方案

6. 数据需求

 1. 用户分析

     用户画像分析
     行为路径分析
     留存率分析
     活跃度分析
 

 2. 内容分析
  内容分类分析
     热度趋势分析
     传播路径分析
     互动效果分析


 3. 运营分析

     活动效果分析
     转化率分析
     ROI分析
     增长指标分析

7. 商业化需求

  1. 变现模式
  • 直播打赏
  • 广告变现
  • 电商带货
  • 会员增值服务
  1. 商业系统
  • 广告投放平台
  • 商家管理系统
  • 结算系统
  • 数据分析平台
  1. 营销功能
  • 活动营销工具
  • 精准投放系统
  • 效果追踪系统
  • ROI分析系统

8. 合规需求

 1. 内容审核
   人工审核
    AI审核
    实时监控
    用户举报处理


 2. 版权保护

    原创认证
    盗版监控
    维权通道
    版权交易


 3. 合规管理
    实名认证
    未成年保护
    数据合规
    隐私保护

`

这些需求可以根据实际情况进行调整和扩展。关键是要:

  1. 确保核心功能的稳定性和可用性
  2. 注重用户体验和产品体验
  3. 建立完善的运营体系
  4. 实现商业化闭环
  5. 保证合规要求
  6. 提供数据支持

技术栈及大致实现

这里我将用 Pulsar、Higress、HBase、ClickHouse、MySQL、Redis 和 Spring 等实现一个短视频应用,这里提供一个架构思路和简化的代码示例,并解释每个组件的作用。

架构思路:

  1. 视频上传和存储: 用户上传短视频后,使用 Spring Boot 后端接收视频数据。视频数据可以存储在对象存储(例如 Amazon S3(因为我一般是英文环境开发,国外的云服务用的多), 阿里云 OSS)或分布式文件系统(例如 HDFS, Ceph)中。为了简化,示例代码会将视频路径存储到 MySQL 中。

  2. 视频元数据存储: 视频的元数据,例如标题、描述、用户ID、上传时间等,存储在 MySQL 数据库中。

  3. 用户数据存储: 用户信息,例如用户名、密码、关注列表等,存储在 MySQL 数据库中。

  4. 实时消息传递: 使用 Pulsar 处理视频上传后的异步操作,例如视频转码、推送通知等。

  5. API 网关: 使用 Higress 作为 API 网关,管理 API 访问权限和路由。

  6. 实时推荐: 用户行为数据(例如观看记录、点赞、评论等)存储在 HBase 中,使用 ClickHouse 进行实时分析,为用户推荐相关视频。

  7. 缓存: 使用 Redis 缓存常用的数据,例如用户信息、视频元数据、推荐结果等,提升访问速度。

简化代码示例 (Spring Boot):

@RestController
public class VideoController {
   

    @Autowired
    private VideoService videoService;

    @PostMapping("/upload")
    public String uploadVideo(@RequestParam("file") MultipartFile file) throws IOException {
   
        String videoPath = videoService.saveVideo(file); // 保存视频到存储,返回视频路径
        // ... 保存视频元数据到 MySQL
        // ... 发送消息到 Pulsar,触发视频转码等操作
        return videoPath;
    }

    @GetMapping("/recommend")
    public List<Video> recommendVideos(@RequestParam("userId") Long userId) {
   
        // ... 从 Redis 获取推荐结果,如果缓存未命中,则从 ClickHouse 查询
        // ... 查询用户行为数据从HBase
        // ... 使用推荐算法生成推荐列表
        // ... 将推荐结果缓存到 Redis
        return videoService.getRecommendedVideos(userId);
    }
}

技术选型说明:

  • Spring Boot: 构建后端服务的基础框架。
  • MySQL: 存储视频元数据和用户信息。
  • Redis: 缓存常用数据,提高访问速度。
  • Pulsar: 处理异步任务,例如视频转码、推送通知。
  • Higress: API 网关,管理 API 访问权限和路由。
  • HBase: 存储用户行为数据,支持高吞吐量的写入和读取。
  • ClickHouse: 用于实时分析用户行为数据,生成推荐结果。

进一步完善:

  • 视频转码: 集成视频转码服务,将上传的视频转换为不同分辨率的格式。
  • 推送通知: 当用户上传新视频或收到评论和点赞时,推送通知给用户。
  • 搜索功能: 集成搜索引擎,例如 Elasticsearch,提供视频搜索功能。
  • 安全认证: 实现用户认证和授权,保护用户数据和视频内容。
  • 监控和日志: 集成监控和日志系统,监控应用性能和排查问题。

由于一个完整的短视频应用代码量非常大,这里提供一个简化的 Spring Boot 后端示例,演示视频上传和获取推荐视频的功能。 这个示例主要关注核心逻辑和技术组件的整合,省略了部分细节,例如数据库建表语句、异常处理、安全认证等。

1. 项目依赖 (pom.xml):

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值