宋浩高等数学笔记(一)函数与极限

b站宋浩老师的高等数学网课,全套笔记已记完,不定期复习并发布更新。

首先插播一下考研数学一对于这一章的要求:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系

2.了解函数的有界性单调性、周期性和奇偶性

3.理解复合函数分段函数的概念,了解反函数隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限右极限的概念以及函数极限存在与左极限、右极限之间的关系.

6.掌握极限的性质及四则运算法则

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性最大值最小值定理、介值定理),并会应用这些性质.

章节顺序与同济大学第七版教材所一致。


作为大学数学的先导课程章节,《函数与极限》相当于是中学时期初等数学的一个进阶版:

  • 首先对于映射和函数的定义,虽然中学也接触过,但高数中给出了更加严格明了的规定:函数本质上是特殊的映射——映射可以为任何事物的映射,而函数则是数集到数集的映射~
  • 函数的几种特性中学有所接触,在大学中不算什么难事~
  • 数列的极限可以说是应试教育中的一个新鲜术语,严格的伊普西龙-德尔塔语言中,德尔塔存在的意义是刻画数列项的充分接近(即几乎不变),而伊普西龙本质为一个无穷小的正数,意义在于数列元素值与极限值的差异几乎为0
  • 函数的极限和数列的极限本质上相同,你可以理解为离散型随机变量和连续型随机变量的区别~(即有限个与无限个取值的区别)

1.1映射与函数

一.映射

X/Y为非空集合,存在法则f,对于X中每个元素x,都有唯一的y与之对应,则f为X到Y的映射,记作f:X->Y。X又称为原像,Y为像~

(映射只需要满足是非空集合,而不一定是数集~)

  1. 定义域:X,记作D_{f},单词为Domain
  2. 值域:Y,记作R_{f},单词为Range
  3. 组成三要素:定义域,映射关系,值域
  4. 任意x\epsilon X,都存在唯一的y与之对应,但可以有多个x对应同一个y
  5. 满射:R_{f}=Y——即Y中的全部元素都用上
  6. 单射:若x_{1} \neq x_{2},则有f(x_{1}) \neq f(x_{2})
  7. 一一映射:又称双射,也即既是满射又是单射
  8. 逆映射:若X——>Y,且f为单射,对应y\epsilon R_{f}(不一定满射),都有唯一的x\epsilon X,则称g:R_{f}——>X为f的逆映射,记作f^{-1},定义域D_{f^{-1} } =R_{f}(并非Y),值域R_{f^{-1} } =X。注意:只有单射才有逆映射
  9. 复合映射:g:X——> Y_{1},f:Y_{2}——>Z,且有Y_{1} \subset Y_{2},则有复合映射:f[g(x)]\epsilon Z,记作:f\circ g:X\longrightarrow Z(注意:映射是集合到集合,所有符号必须大写~)。此外,复合映射里面映射的值域一定要包含于外面映射的定义域。

二.函数

  1. 所谓函数,即为数集到数集的映射。存在D\subset Rf:D\longrightarrow R,记作y=f(x),x\in D(D为定义域,R为实数集,并非传统意义上的值域~)(f为函数的队友法则)
  2. 要素:定义域D和对应法则f(函数的值域必在实数集中,故不需要强调值域)
  3. 表示方法:表格法,图形法,解析式法
  4. 符号函数:y=sgn x:自变量为正函数值为1,为0则为0,为负则为-1。
  5. [x]用于表示不超过x的最大整数
  6. 分段函数:不同定义域上表达式不同
  7. 表示本身的函数:x=sgn x.[x]

三.函数的特性

  1. 有界性:上界的定义是,存在k_{1}\forall f(x)\le k_{1},下界则正好相反。上下界均不唯一。有界的充要条件是既有上界也有下界,即\left | f(x) \right |\le M,而无界的意义则是,永远无法找到这样的M包络函数的值域。
  2. 单调性:若函数单调递增,则\forall x_{1} < x_{2},有f(x_{1})< f(x_{2})。单调减则同理。
  3. 奇偶性:前提条件是定义域关于原点对称,偶函数恒有f(x)=f(-x),奇函数恒有-f(x)=f(-x)
  4. 周期性:存在正数l,有f(x+l)=f(x)。但并非所有的函数均有最小周期,例如狄利克雷函数,任何的正有理数都是周期~

四.反函数和逆函数

设存在单射:f:D\longrightarrow f(D),设存在逆映射f_{}^{-1} :f(D)\longrightarrow D,称其为前者的反函数。

  • 若f为单调增,则反函数也单调增;反之也同理。
  • 原函数与反函数关于x=y对称。

五.复合函数

y=f(t),t=g(x),则有y=f(g(x),其中t为中间变量~

六.定义域相关性质

设f(x)的定义域是[-l,l],f(x)=g(x)+h(x),g为偶函数,f为奇函数,则有:

  • f(x)=g(x)+h(x)
  • f(x)=g(x)-h(x)
  • g(x)=\frac{1}{2} [f(x)+f(-x)]
  • h(x)=\frac{1}{2} [f(x)-f(-x)]

七.初等函数

由基本初等函数经过有限次四则运算和复合而成。

1.2数列的极限

1.3函数的极限

  • 在无穷小这一章节中,引出无穷小的定义——各位千万不要理解错了,顾名思义,趋于零就叫无穷小;同理趋于无穷则是无穷大。需要注意的是,这里值得是函数值的变化,而并非自变量趋于的值——当x趋于0或无穷大时极限为0,都被称为无穷大~
  •  在极限的运算法则中,要避免惯性思维的阴谋——所谓的极限是指无限接近但永不相等~
  • 极限存在准则,即所谓的夹逼定理,和高中学的放缩法很类似
  • 2个重要极限,分别是sinx/x=1和(1+1/x)^x=e

1.4无穷小和无穷大

1.5极限运算准则

1.6极限存在准则and两个重要极限

1.7无穷小

  • 有关无穷小的量级问题,我们规定趋于零速度快的函数被称为高阶无穷小~
  • 所谓连续,即当x值的变化量趋于0时y值的变化量也趋于0。连续的3个条件是,x处有极限、x处有定义,且极限值与函数值相同,我们称函数在这一点上连续~
  • 零点存在定理是指,在闭区间上连续的函数,且端点处函数值之积小于零,则该区间上一定有一点使得f(x)=0
  • 介值定理是指,在闭区间上至少有一点处的函数值,位于端点函数值中间

1.8函数的连续性和间断点

1.9连续函数的运算and初等函数的连续性

1.10闭区间上连续函数的性质

### 回答1: 宋浩高等数学讲义pdf是份电子版的高等数学教材,由宋浩编写,以PDF格式出版。该讲义主要面向高等数学的学习者和教师,内容涵盖高等数学的各个重要章节,包括微积分、线性代数、常微分方程等内容。 宋浩高等数学讲义的特点如下:首先,该讲义以简明扼要的方式讲解数学概念原理,语言通俗易懂,深入浅出地介绍了高等数学的各个知识点。其次,讲义使用大量的例题和习题作为补充,帮助学生巩固知识、提高解题能力。同时,讲义中还有详细的解题步骤和解析,方便学生查阅和理解。此外,讲义的排版整齐、清晰,方便学生进行阅读查阅。 宋浩高等数学讲义的优点有:首先,该讲义内容全面,包含高等数学的各个章节,涵盖了学习者需要了解的核心概念和方法。其次,讲义中的例题和习题丰富多样,有助于学生巩固和应用所学知识。此外,讲义使用了大量的图表、图示和实例,帮助学生理解抽象的数学概念,提高学习效果。最后,讲义的电子版PDF格式方便学生在电子设备上随时阅读和学习,具有很强的灵活性和便捷性。 综上所述,宋浩高等数学讲义pdf是份较为全面、详细、清晰的高等数学教材,值得学生和教师使用和参考。它能够帮助学生深入理解高等数学的各个概念和方法,并提供了大量的例题和习题供学生进行练习和应用。 ### 回答2: 《宋浩高等数学讲义》是本以高等数学为主题的PDF教材。该教材由高等数学专家宋浩编写,旨在帮助学生掌握高等数学的基本概念、定理和解题方法。 这本讲义的特点之课堂教学紧密结合。作者深入浅出地讲解了高等数学各个章节的知识点,配以大量的例题和习题,帮助学生巩固理论知识。此外,讲义中还包含了许多经典的数学问题和练习题,使学生在理论学习的基础上能够提高解题能力。 另个重要特点是讲义的系统性和全面性。该讲义涵盖了高等数学的各个分支,包括数列级数、函数极限、微分学、积分学以及常微分方程等等。通过系统地学习这些内容,学生可以建立起对高等数学知识体系的整体性认识,从而更好地应对考试和实际问题。 此外,讲义还具有清晰的逻辑结构和规范的书写风格,便于学生阅读和理解。作者在书中还提供了些常用公式和定理的证明,这对于提高学生的数学思维能力非常有帮助。 总的来说,宋浩高等数学讲义的PDF版本是本内容丰富、系统性强的教材。通过认真阅读和学习,学生可以全面掌握高等数学的知识,提高解题能力和数学思维水平,为今后的学习和工作打下坚实的基础。 ### 回答3: 宋浩高等数学讲义pdf是本非常优质的高等数学教材,具有如下特点: 首先,宋浩高等数学讲义pdf内容全面且系统,涵盖了高等数学的各个重要领域,包括数列极限函数连续、微分学、积分学、微分方程等等。无论是大学生还是高中生,都可以通过这本教材系统地学习高等数学的各个知识点。 其次,宋浩高等数学讲义pdf的讲解深入浅出,通俗易懂。文字简明扼要,注重概念的阐述和解题方法的讲解,帮助读者快速掌握数学的核心思想和解题技巧。 再次,举例生动详实,配有大量的示例和练习题。这让读者通过实际案例更好地理解和掌握高等数学的理论知识,并能够进行独立的思考和解题。 最后,宋浩高等数学讲义pdf还提供了些实际应用和拓展的内容,帮助读者将数学理论实际问题联系起来,培养解决实际问题的能力。 总体来说,宋浩高等数学讲义pdf是本权威、全面、易读且实用的高等数学教材,适合各个层次的读者使用。无论是备考高考还是深入研究数学,这本教材都是本不可多得的宝典。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lyric群青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值