b站宋浩老师的高等数学网课,全套笔记已记完,不定期复习并发布更新。
首先插播一下考研数学一对于这一章的要求:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
章节顺序与同济大学第七版教材所一致。
作为大学数学的先导课程章节,《函数与极限》相当于是中学时期初等数学的一个进阶版:
- 首先对于映射和函数的定义,虽然中学也接触过,但高数中给出了更加严格明了的规定:函数本质上是特殊的映射——映射可以为任何事物的映射,而函数则是数集到数集的映射~
- 函数的几种特性中学有所接触,在大学中不算什么难事~
- 数列的极限可以说是应试教育中的一个新鲜术语,严格的伊普西龙-德尔塔语言中,德尔塔存在的意义是刻画数列项的充分接近(即几乎不变),而伊普西龙本质为一个无穷小的正数,意义在于数列元素值与极限值的差异几乎为0
- 函数的极限和数列的极限本质上相同,你可以理解为离散型随机变量和连续型随机变量的区别~(即有限个与无限个取值的区别)
1.1映射与函数
一.映射
X/Y为非空集合,存在法则f,对于X中每个元素x,都有唯一的y与之对应,则f为X到Y的映射,记作f:X->Y。X又称为原像,Y为像~
(映射只需要满足是非空集合,而不一定是数集~)
- 定义域:X,记作
,单词为Domain
- 值域:Y,记作
,单词为Range
- 组成三要素:定义域,映射关系,值域
- 任意
,都存在唯一的y与之对应,但可以有多个x对应同一个y
- 满射:
=Y——即Y中的全部元素都用上
- 单射:若
,则有
- 一一映射:又称双射,也即既是满射又是单射
- 逆映射:若X——>Y,且f为单射,对应
(不一定满射),都有唯一的
,则称g:
——>X为f的逆映射,记作
,定义域
(并非Y),值域
。注意:只有单射才有逆映射
- 复合映射:g:X——>
,f:
——>Z,且有
,则有复合映射:
,记作:
(注意:映射是集合到集合,所有符号必须大写~)。此外,复合映射里面映射的值域一定要包含于外面映射的定义域。
二.函数
- 所谓函数,即为数集到数集的映射。存在
,
,记作
(D为定义域,R为实数集,并非传统意义上的值域~)(f为函数的队友法则)
- 要素:定义域D和对应法则f(函数的值域必在实数集中,故不需要强调值域)
- 表示方法:表格法,图形法,解析式法
- 符号函数:y=sgn x:自变量为正函数值为1,为0则为0,为负则为-1。
- [x]用于表示不超过x的最大整数
- 分段函数:不同定义域上表达式不同
- 表示本身的函数:x=sgn x.[x]
三.函数的特性
- 有界性:上界的定义是,存在
,
,下界则正好相反。上下界均不唯一。有界的充要条件是既有上界也有下界,即
,而无界的意义则是,永远无法找到这样的M包络函数的值域。
- 单调性:若函数单调递增,则
,有
。单调减则同理。
- 奇偶性:前提条件是定义域关于原点对称,偶函数恒有
,奇函数恒有
。
- 周期性:存在正数l,有
。但并非所有的函数均有最小周期,例如狄利克雷函数,任何的正有理数都是周期~
四.反函数和逆函数
设存在单射:,设存在逆映射
,称其为前者的反函数。
- 若f为单调增,则反函数也单调增;反之也同理。
- 原函数与反函数关于x=y对称。
五.复合函数
y=f(t),t=g(x),则有y=f(g(x),其中t为中间变量~
六.定义域相关性质
设f(x)的定义域是[-l,l],f(x)=g(x)+h(x),g为偶函数,f为奇函数,则有:
- f(x)=g(x)+h(x)
- f(x)=g(x)-h(x)
- g(x)=
- h(x)=
七.初等函数
由基本初等函数经过有限次四则运算和复合而成。
1.2数列的极限
1.3函数的极限
- 在无穷小这一章节中,引出无穷小的定义——各位千万不要理解错了,顾名思义,趋于零就叫无穷小;同理趋于无穷则是无穷大。需要注意的是,这里值得是函数值的变化,而并非自变量趋于的值——当x趋于0或无穷大时极限为0,都被称为无穷大~
- 在极限的运算法则中,要避免惯性思维的阴谋——所谓的极限是指无限接近但永不相等~
- 极限存在准则,即所谓的夹逼定理,和高中学的放缩法很类似
- 2个重要极限,分别是sinx/x=1和(1+1/x)^x=e
1.4无穷小和无穷大
1.5极限运算准则
1.6极限存在准则and两个重要极限
1.7无穷小
- 有关无穷小的量级问题,我们规定趋于零速度快的函数被称为高阶无穷小~
- 所谓连续,即当x值的变化量趋于0时y值的变化量也趋于0。连续的3个条件是,x处有极限、x处有定义,且极限值与函数值相同,我们称函数在这一点上连续~
- 零点存在定理是指,在闭区间上连续的函数,且端点处函数值之积小于零,则该区间上一定有一点使得f(x)=0
- 介值定理是指,在闭区间上至少有一点处的函数值,位于端点函数值中间