高等数学专题——三角函数公式大全

这篇帖子详尽整理了三角函数的核心内容,包括诱导公式、平方关系、角公式系列、求导规则、积分方法以及六边形法则,是学习微积分的重要参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2025年1月4日更新:

本系列的笔记为博主在本科学习期间看宋浩老师的网课所整理,毕竟是自用的,难免有些错误,此处就删除原贴中的手写笔记,改用LateX排版一下,以免旧版的公式误人子弟~


掌握好三角函数,是学好微积分必不可少的一环。本帖的公式内容可以并列全网最全(doge),博主多方面搜集并总结了最重要和常用的三角函数公式,具体为以下几个内容:

1.诱导公式

\sin (2k\pi +\theta )=\sin \theta              \cos (2k\pi +\theta )=\cos \theta            \tan (2k\pi +\theta )=\tan \theta

\sin (\pi +\theta )=-\sin \theta              \cos (\pi +\theta )=-\cos \theta             \tan (\pi +\theta )=\tan \theta

\sin (-\theta)=-\sin \theta                  \cos (-\theta)=\cos \theta                     \tan (-\theta)=-\tan \theta

\sin (\pi -\theta)=\sin \theta                  \cos (\pi -\theta)=-\cos \theta             \tan (\pi -\theta)=-\tan \theta  

\sin (\frac{\pi }{2} -\theta)=\cos \theta                  \cos (\frac{\pi }{2} -\theta)=\sin \theta                 \tan (\frac{\pi }{2} -\theta)=\cot \theta

\sin (\frac{\pi }{2} +\theta)=\cos \theta                  \cos (\frac{\pi }{2} +\theta)=-\sin \theta             \tan (\frac{\pi }{2} +\theta)=-\cot \theta             

2.平方关系

\sin^{2} \theta +\cos^{2} \theta =1                   \tan^{2} \theta +1 =\sec^{2} \theta              \cot^{2} \theta +1 =\csc^{2} \theta

3.二倍角公式

\sin2\theta =2\sin\theta \cos \theta                \cos2\theta =\cos^{2} \theta -\sin^{2} \theta       \tan2\theta =\frac{2\tan\theta }{1-\tan^{2}\theta }

4.半角公式

\sin\theta =\pm \sqrt{\frac{1-\cos2\theta }{2} }                  \cos\theta =\pm \sqrt{\frac{1+\cos2\theta }{2} }             \tan\theta =\pm \sqrt{\frac{1-\cos2\theta }{1+\cos2\theta} }

5.和差角公式

\sin(\alpha \pm \beta)=\sin\alpha \cdot \cos\beta \pm \sin\beta \cdot \cos\alpha

\cos(\alpha \pm \beta)=\cos\alpha \cdot \cos\beta \mp \sin\beta \cdot \sin\alpha

\tan(\alpha \pm \beta)=\frac{\tan \alpha \pm\tan \beta }{1\mp \tan\alpha \cdot \tan \beta }

6.积化和差

\sin \alpha \cdot \sin\beta =\frac{\cos(\alpha -\beta)-\cos(\alpha +\beta)}{2}

\cos \alpha \cdot \cos\beta =\frac{\cos(\alpha -\beta)+\cos(\alpha +\beta)}{2}

\sin \alpha \cdot \cos\beta =\frac{\sin(\alpha+\beta)+\sin(\alpha -\beta)}{2}

\cos \alpha \cdot \sin\beta =-\frac{\sin(\alpha+\beta)-\sin(\alpha -\beta)}{2}

7.和差化积

\sin\alpha +\sin\beta=2\sin\frac{\alpha +\beta}{2} \cos\frac{\alpha -\beta}{2}

\sin\alpha -\sin\beta=2\cos\frac{\alpha +\beta}{2} \sin\frac{\alpha -\beta}{2}

\cos\alpha +\cos\beta=2\cos\frac{\alpha +\beta}{2} \cos\frac{\alpha -\beta}{2}

\cos\alpha -\cos\beta=2\cos\frac{\alpha +\beta}{2} \cos\frac{\alpha -\beta}{2}

8.辅助角公式

a\sin x + b\cos x = \sqrt{a^2 + b^2} \sin(x + \varphi)

其中:

\tan\varphi =\frac{b}{a}

9.三角函数求导

{\sin x}' =\cos x                        {\cos x}' =-\sin x                  {\tan x}' =\tan ^{2}x+1

{\csc x}' =-\cot x \cdot \csc x       {\sec x}' =\tan x \cdot \sec x          {\cot x}' = -\csc ^{2}x

10.反三角函数求导

{\arcsin x}' = \frac{1}{\sqrt{1-x^{2} } }                                     {\arccos x}' =- \frac{1}{\sqrt{1-x^{2} } }

{\arctan x}' =\frac{1}{1+x^{2} }                                       {\operatorname{arccot}}' =-\frac{1}{1+x^{2} }

11.三角函数的积分

\int \sin x\mathrm{d}x =-\cos x+C                      \int \cos x\mathrm{d}x =\sin x+C

\int \tan x\mathrm{d}x =\ln_{}{\left | \sec x \right | } +C                   \int \cot x\mathrm{d}x =\ln_{}{\left | \ x \right | } +C

\int \sec x\mathrm{d}x =\ln_{}{\left | \tan x+\sec x \right | } +C    \int \csc x\mathrm{d}x =\ln_{}{\left | \csc x-\cot x \right | } +C

\int \sin ^{2} x\mathrm{d}x=\frac{1}{2}x-\frac{1}{4} \sin 2x+C         \int \cos ^{2} x\mathrm{d}x=\frac{1}{2}x+\frac{1}{4} \sin 2x+C

\int \tan ^{2} x\mathrm{d}x=\tan x-x+C               \int \cot ^{2} x\mathrm{d}x=-\cot x-x+C

\int sec^{2}x\mathrm{d}x =\int \tan x+C                    \int csc^{2}x\mathrm{d}x =-\int \cot x+C

12.反三角函数的积分

\int \arcsin x \mathrm{d}x=x\cdot \arcsin x+\sqrt{(1-x^{2} )} +C

\int \arcsin x \mathrm{d}x=x\cdot \arcsin x-\sqrt{(1-x^{2} )} +C

\int \arctan x \mathrm{d}x=x\cdot \arctan x-\frac{\ln_{}{(1+x^{2} )} }{2} +C

\int \operatorname{arccot} \mathrm{d}x=x\cdot \arctan x+\frac{\ln_{}{(1+x^{2} )} }{2} +C

13.三角函数的六边形法则

 如上图:

  1. 沿顺时针两个元素的商,等于被除数的上一个元素
  2. 三个尖头朝下的正三角形:两个顶角的平方和等于底角的平方
  3. 正弦、正切、正割的求导、积分均为正,其他则为负
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lyric群青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值