宋浩高等数学笔记(十一)曲线积分与曲面积分

本文介绍了曲线积分的两种类型(第一类和第二类),它们在数学中的概念、物理意义和计算方法,包括格林公式在平面曲线积分中的应用。同时涵盖了曲面积分的定义、计算以及与曲线积分的联系,强调了考研数学大纲的相关要求和实例分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        个人认为同济高数乃至数学一中最烧脑的一章。。。重点在于计算方式的掌握,如果理解不了可以暂时不强求,背熟积分公式即可。此外本贴暂时忽略两类曲面积分之间的联系,以及高斯公式的相关内容,日后会尽快更新,争取高效率学习。

        在数学中,曲线积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。曲线积分可分为:第一类曲线积分和第二类曲线积分。

        定义在曲面上的函数或向量值函数关于该曲面的积分。曲面积分一般分成第一型曲面积分和第二型曲面积分。

        第一型曲面积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。第二型曲面积分物理意义来源对于给定的空间曲面和流体的流速,计算单位时间流经曲面的总流量。

一型曲线积分与单积分的联系:设曲线L可表示为函数y=y(x)从a到b的一段。将弧微分ds近似为直线,由图2的直角三角形得~

二型曲线积分与单积分的联系:设曲线L可表示为函数y=y(x)从a到b的一段~

一二型曲线积分的联系:把一型的ds投影到dx与dy方向上,即可转换为二型

目录

11.1对弧长的曲线积分

11.2对坐标的曲线积分

11.3两类曲线积分的联系

11.4格林公式

11.5对面积的曲面积分

11.6对坐标的曲面积分 


考研数学一大纲对这一章的要求如下:

1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.

2.掌握计算两类曲线积分的方法.

3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.

4.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分。

5.了解散度旋度的概念,并会计算.


11.1对弧长的曲线积分

  • 几何意义是,曲线上的密度不想同,因此需要通过积分来求出变化的密度
  • 所谓的密度不同的曲线,可以有2维和3维两种
  • (函数值可以为负~)
  • 计算方法记住公式套路就行,花样不是很多
  • 原公式中x、y的均为t的函数,本质上就是参数方程;有时候y为x的函数,亦或x与y的函数,可以将其中一个之接视为参数t

11.2对坐标的曲线积分

  • 第二类曲线积分本质为变力在做功时方向和大小都在变化
  • 也分为二维和三维的情况
  • 对坐标的曲线积分,亦可以分段,且区间的变化是点的坐标到点的坐标的变化
  • 积分方向的选择非常重要~

11.3两类曲线积分的联系

  • 一类:f*德尔塔s(s即为根号下德尔塔x方和德尔塔y方的和)~
  • 二类:P*德尔塔x+Q*德尔塔y

11.4格林公式

  • 本质上,就是三维的牛顿莱布尼茨公式~
  • 单连通区域:D内任一闭曲线围城的部分都属于D~
  • 复联通区域:逆时针是正方向
  • 格林公式的定义:设闭区域D由分段光滑的曲线L围成,P(x,y)与Q(x,y)在D上有一阶连续偏导,则D区域上的二重积分,即为L闭区间的曲线积分,L为D的正方向曲线
  • 积分符号上有一个圆圈,意为闭曲线上的曲线积分
  • (例题一定要重视~)

11.5对面积的曲面积分

  • 定积分:积分域
  • 二重积分:平面域
  • 三重积分:空间域
  • 曲线积分:曲线弧
  • 曲面积分:曲面域~
  •  如果三元函数在光滑曲面上连续,则对面积的曲面积分存在~
  • 计算方式为将曲面投影在XoY平面上,相当于先用累次积分再用一次普通的定积分~

11.6对坐标的曲面积分 

  • 对坐标的曲面积分是由方向~
  • (例题非常重要)

 

 

 

 

### 回答1: 宋浩高等数学讲义pdf是一份电子版的高等数学教材,由宋浩编写,以PDF格式出版。该讲义主要面向高等数学的学习者和教师,内容涵盖高等数学的各个重要章节,包括微积分、线性代数、常微分方程等内容。 宋浩高等数学讲义的特点如下:首先,该讲义以简明扼要的方式讲解数学概念原理,语言通俗易懂,深入浅出地介绍了高等数学的各个知识点。其次,讲义使用大量的例题和习题作为补充,帮助学生巩固知识、提高解题能力。同时,讲义中还有详细的解题步骤和解析,方便学生查阅和理解。此外,讲义的排版整齐、清晰,方便学生进行阅读查阅。 宋浩高等数学讲义的优点有:首先,该讲义内容全面,包含高等数学的各个章节,涵盖了学习者需要了解的核心概念和方法。其次,讲义中的例题和习题丰富多样,有助于学生巩固和应用所学知识。此外,讲义使用了大量的图表、图示和实例,帮助学生理解抽象的数学概念,提高学习效果。最后,讲义的电子版PDF格式方便学生在电子设备上随时阅读和学习,具有很强的灵活性和便捷性。 综上所述,宋浩高等数学讲义pdf是一份较为全面、详细、清晰的高等数学教材,值得学生和教师使用和参考。它能够帮助学生深入理解高等数学的各个概念和方法,并提供了大量的例题和习题供学生进行练习和应用。 ### 回答2: 《宋浩高等数学讲义》是一本以高等数学为主题的PDF教材。该教材由高等数学专家宋浩编写,旨在帮助学生掌握高等数学的基本概念、定理和解题方法。 这本讲义的特点之一是课堂教学紧密结合。作者深入浅出地讲解了高等数学各个章节的知识点,配以大量的例题和习题,帮助学生巩固理论知识。此外,讲义中还包含了许多经典的数学问题和练习题,使学生在理论学习的基础上能够提高解题能力。 另一个重要特点是讲义的系统性和全面性。该讲义涵盖了高等数学的各个分支,包括数列级数、函数极限、微分学、积分学以及常微分方程等等。通过系统地学习这些内容,学生可以建立起对高等数学知识体系的整体性认识,从而更好地应对考试和实际问题。 此外,讲义还具有清晰的逻辑结构和规范的书写风格,便于学生阅读和理解。作者在书中还提供了一些常用公式和定理的证明,这对于提高学生的数学思维能力非常有帮助。 总的来说,宋浩高等数学讲义的PDF版本是一本内容丰富、系统性强的教材。通过认真阅读和学习,学生可以全面掌握高等数学的知识,提高解题能力和数学思维水平,为今后的学习和工作打下坚实的基础。 ### 回答3: 宋浩高等数学讲义pdf是一本非常优质的高等数学教材,具有如下特点: 首先,宋浩高等数学讲义pdf内容全面且系统,涵盖了高等数学的各个重要领域,包括数列极限、函数连续、微分学、积分学、微分方程等等。无论是大学生还是高中生,都可以通过这本教材系统地学习高等数学的各个知识点。 其次,宋浩高等数学讲义pdf的讲解深入浅出,通俗易懂。文字简明扼要,注重概念的阐述和解题方法的讲解,帮助读者快速掌握数学的核心思想和解题技巧。 再次,举例生动详实,配有大量的示例和练习题。这让读者通过实际案例更好地理解和掌握高等数学的理论知识,并能够进行独立的思考和解题。 最后,宋浩高等数学讲义pdf还提供了一些实际应用和拓展的内容,帮助读者将数学理论实际问题联系起来,培养解决实际问题的能力。 总体来说,宋浩高等数学讲义pdf是一本权威、全面、易读且实用的高等数学教材,适合各个层次的读者使用。无论是备考高考还是深入研究数学,这本教材都是一本不可多得的宝典。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lyric群青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值