卡特兰数学习笔记

卡特兰数(Catalan 数)学习笔记

一、引入

问题 1

n n n + 1 +1 +1 n n n − 1 -1 1 组成的 2 n 2n 2n 项序列 a 1 , a 2 , ⋯   , a 2 n a_1,a_2,\cdots,a_{2n} a1,a2,,a2n,求有多少种方案满足其部分和 a 1 + a 2 + ⋯ + a k ≥ 0   ( k = 1 , 2 , ⋯   , 2 n ) a_1+a_2+\cdots+a_k \ge 0\ (k=1,2,\cdots,2n) a1+a2++ak0 (k=1,2,,2n)

分析

设满足条件的方案数(即答案)为 C n C_n Cn,不满足条件的方案数为 U n U_n Un

n n n + 1 +1 +1 n n n − 1 -1 1 组成的序列总数为 ( 2 n ) ! n ! n ! = ( 2 n n ) \dfrac{(2n)!}{n!n!}=\dbinom{2n}{n} n!n!(2n)!=(n2n)

那么 C n + U n = ( 2 n n ) C_n+U_n=\dbinom{2n}{n} Cn+Un=(n2n)

我们只要求出 U n U_n Un,就可以得到 C n C_n Cn

因为不满足条件,所以一定存在第一个 k k k,使得 a 1 + a 2 + ⋯ + a k < 0 a_1+a_2+\cdots+a_k<0 a1+a2++ak<0

因为 k k k 是第一个,所以 a 1 + a 2 + ⋯ + a k − 1 = 0 a_1+a_2+\cdots+a_{k-1}=0 a1+a2++ak1=0,且 a k = − 1 a_k=-1 ak=1

同时, k k k 为奇整数。

我们将前 k k k 项的符号取反,剩下的不变,就可以得到一个由 n + 1 n+1 n+1 + 1 +1 +1 n − 1 n-1 n1 − 1 -1 1 组成的序列,而这个序列和前面不满足条件的序列一一对应(考虑第一个 + 1 +1 +1 个数超过 − 1 -1 1 的位置,将这个位置及其前面符号取反,就可以得到一个不满足条件的序列)。

那么 U n U_n Un 等于由 n + 1 n+1 n+1 + 1 +1 +1 n − 1 n-1 n1 − 1 -1 1 组成的序列的个数,即 ( 2 n ) ! ( n + 1 ) ! ( n − 1 ) ! = ( 2 n n + 1 ) \dfrac{(2n)!}{(n+1)!(n-1)!}=\dbinom{2n}{n+1} (n+1)!(n1)!(2n)!=(n+12n)

所以 C n = ( 2 n n ) − ( 2 n n + 1 ) = 1 n + 1 ( 2 n n ) C_n=\dbinom{2n}{n}-\dbinom{2n}{n+1}=\dfrac{1}{n+1}\dbinom{2n}{n} Cn=(n2n)(n+12n)=n+11(n2n)

即为第 n n n 个卡特兰数。

扩展

若改为 n n n + 1 +1 +1 m m m − 1 -1 1,且 n ≥ m n\ge m nm,那么有多少种?

分析

同样设满足条件方案数为 A n A_n An,不满足的为 U n U_n Un

那么 A n + U n = ( n + m n ) A_n+U_n=\dbinom{n+m}{n} An+Un=(nn+m)

U n = ( n + m n + 1 ) U_n=\dbinom{n+m}{n+1} Un=(n+1n+m),所以 A n = ( n + m n ) − ( n + m n + 1 ) A_n=\dbinom{n+m}{n}-\dbinom{n+m}{n+1} An=(nn+m)(n+1n+m)


问题 2

求以下递推关系的解:

C 0 = 1 C_0=1 C0=1

C n = C 0 C n − 1 + C 1 C n − 2 + ⋯ + C n − 1 C 0 = ∑ k = 0 n − 1 C k C n − k − 1 C_n=C_0C_{n-1}+C_1C_{n-2}+\cdots+C_{n-1}C_0=\sum\limits_{k=0}^{n-1}C_kC_{n-k-1} Cn=C0Cn1+C1Cn2++Cn1C0=k=0n1CkCnk1

分析

g ( x ) = C 0 + C 1 x + C 2 x 2 + ⋯ + C n x n + ⋯ g(x)=C_0+C_1x+C_2x^2+\cdots+C_nx^n+\cdots g(x)=C0+C1x+C2x2++Cnxn+ 为数列 C 0 , C 1 , ⋯   , C n C_0,C_1,\cdots,C_n C0,C1,,Cn 的生成函数。
( g ( x ) ) 2 = C 0 C 0 + ( C 0 C 1 + C 1 C 0 ) x + ( C 0 C 2 + C 1 C 1 + C 2 C 0 ) x 2 + ⋯ + ( C 0 C n + C 1 C n − 1 + ⋯ + C n C 0 ) x n = ∑ i = 0 ∞ C i + 1 x i (g(x))^2=C_0C_0+(C_0C_1+C_1C_0)x+(C_0C_2+C_1C_1+C_2C_0)x^2+\cdots+(C_0C_n+C_1C_{n-1}+\cdots+C_nC_0)x^n \\ =\sum\limits_{i=0}^{\infty}C_{i+1}x^i (g(x))2=C0C0+(C0C1+C1C0)x+(C0C2+C1C1+C2C0)x2++(C0Cn+C1Cn1++CnC0)xn=i=0Ci+1xi

x ( g ( x ) ) 2 = ∑ i = 0 ∞ C i x i − C 0 = g ( x ) − C 0 x ( g ( x ) ) 2 − g ( x ) + 1 = 0 x(g(x))^2=\sum\limits_{i=0}^\infty C_ix^i-C_0=g(x)-C_0 \\ x(g(x))^2-g(x)+1=0 x(g(x))2=i=0CixiC0=g(x)C0x(g(x))2g(x)+1=0
解得
g ( x ) = 1 ± 1 − 4 x 2 x g(x)=\dfrac{1\pm \sqrt{1-4x}}{2x} g(x)=2x1±14x

lim ⁡ x → 0 + g ( x ) = C 0 = 1 lim ⁡ x → 0 + g ( x ) = lim ⁡ x → 0 + 1 ± 1 − 4 x 2 x = lim ⁡ x → 0 + 2 1 ∓ 1 − 4 x \lim\limits_{x\to0^+}g(x)=C_0=1 \\ \lim\limits_{x\to0^+}g(x)=\lim\limits_{x\to0^+}\dfrac{1\pm \sqrt{1-4x}}{2x}=\lim\limits_{x\to 0^+}\dfrac{2}{1\mp\sqrt{1-4x}} x0+limg(x)=C0=1x0+limg(x)=x0+lim2x1±14x =x0+lim114x 2
g ( x ) = 1 − 1 − 4 x 2 x g(x)=\dfrac{1-\sqrt{1-4x}}{2x} g(x)=2x114x

由牛顿二项式定理,
( 1 + z ) 1 2 = ∑ k = 0 ∞ ( 1 2 k ) x k (1+z)^{\frac{1}{2}}=\sum\limits_{k=0}^{\infty}\dbinom{\frac{1}{2}}{k}x^k (1+z)21=k=0(k21)xk
对于 k > 0 k>0 k>0
( 1 2 k ) = 1 2 ( 1 2 − 1 ) ⋯ ( 1 2 − k + 1 ) k ! = ( − 1 ) k − 1 2 k 1 × 3 × 5 × ⋯ × ( 2 k − 3 ) k ! = ( − 1 ) k − 1 2 k 1 × 2 × 3 × 4 × ⋯ × ( 2 k − 3 ) × ( 2 k − 2 ) 2 × 4 × ⋯ × ( 2 k − 2 ) × ( k ! ) = ( − 1 ) k − 1 k × 2 2 k − 1 ( 2 k − 2 ) ( ( k − 1 ) ! ) 2 = ( − 1 ) k − 1 k × 2 2 k − 1 ( 2 k − 2 k − 1 ) \dbinom{\frac{1}{2}}{k}=\dfrac{\frac{1}{2}(\frac{1}{2}-1)\cdots(\frac{1}{2}-k+1)}{k!} \\ =\dfrac{(-1)^{k-1}}{2^k}\dfrac{1\times 3\times 5\times\cdots\times(2k-3)}{k!} \\ =\dfrac{(-1)^{k-1}}{2^k}\dfrac{1\times 2\times 3\times 4\times\cdots\times(2k-3)\times(2k-2)}{2\times 4\times\cdots\times(2k-2)\times (k!)} \\ =\dfrac{(-1)^{k-1}}{k\times 2^{2k-1}}\dfrac{(2k-2)}{((k-1)!)^2} \\ =\dfrac{(-1)^{k-1}}{k\times 2^{2k-1}}\dbinom{2k-2}{k-1} (k21)=k!21(211)(21k+1)=2k(1)k1k!1×3×5××(2k3)=2k(1)k12×4××(2k2)×(k!)1×2×3×4××(2k3)×(2k2)=k×22k1(1)k1((k1)!)2(2k2)=k×22k1(1)k1(k12k2)

− 4 x -4x 4x z z z,可得
1 − 4 x = 1 + ∑ k = 1 ∞ ( − 1 ) k − 1 k ∗ 2 2 k − 1 ( 2 k − 2 k − 1 ) ( − 1 ) k 4 k x k = 1 − 2 ∑ k = 1 ∞ 1 k ( 2 k − 2 k − 1 ) x k \sqrt{1-4x}=1+\sum\limits_{k=1}^{\infty}\dfrac{(-1)^{k-1}}{k*2^{2k-1}}\binom{2k-2}{k-1}(-1)^k4^kx^k \\ =1-2\sum\limits_{k=1}^{\infty}\dfrac{1}{k}\binom{2k-2}{k-1}x^k 14x =1+k=1k22k1(1)k1(k12k2)(1)k4kxk=12k=1k1(k12k2)xk

g ( x ) = 1 2 x ( 1 − ( 1 − 2 ∑ k = 1 ∞ 1 k ( 2 k − 2 k − 1 ) x k ) ) = 1 2 x 2 ∑ k = 1 ∞ 1 k ( 2 k − 2 k − 1 ) x k = ∑ k = 0 ∞ 1 k + 1 ( 2 k k ) x k g(x)=\dfrac{1}{2x}(1-(1-2\sum\limits_{k=1}^{\infty}\dfrac{1}{k}\binom{2k-2}{k-1}x^k)) \\ =\dfrac{1}{2x}2\sum\limits_{k=1}^{\infty}\dfrac{1}{k}\binom{2k-2}{k-1}x^k \\ =\sum\limits_{k=0}^{\infty}\dfrac{1}{k+1}\dbinom{2k}{k}x^k g(x)=2x1(1(12k=1k1(k12k2)xk))=2x12k=1k1(k12k2)xk=k=0k+11(k2k)xk
C n = 1 n + 1 ( 2 n n ) C_n=\dfrac{1}{n+1}\dbinom{2n}{n} Cn=n+11(n2n)

即第 n n n 个卡特兰数。


二、应用

例 1
问题

2 n 2n 2n 个人排列进入剧场,票价 5 5 5 角。其中 n n n 个人有 5 5 5 角硬币,另外 n n n 个人有一元硬币。初始售票处无零钱。问有多少种排列方法使得每个有一元硬币的人买票时,都有 5 5 5 角找零?

分析

5 5 5 角找零的条件为:在任一位置,有 5 5 5 角硬币的人总数大于等于有一元硬币的人个数。

将有 5 5 5 角硬币的人看作 + 1 +1 +1,有一元硬币的人看作 − 1 -1 1,那么就转化为引入中的问题 1。答案为第 n n n 个卡特兰数。


例 2
问题

对于一个 n × n n\times n n×n 的正方形网格,从左下角到右上角,每次只能向右或向上走一格,且不能越过对角线,问有多少种走法。

分析

考虑将向右记为 + 1 +1 +1,向上记为 − 1 -1 1,那么合法路径的数目就等于满足 ∑ i = 1 k a i ≥ 0   , k = 1 , 2 , ⋯   , 2 n \sum\limits_{i=1}^{k}a_i \ge 0\ ,k=1,2,\cdots,2n i=1kai0 ,k=1,2,,2n,即引入中问题 1。

所以答案即为第 n n n 个卡特兰数。


例 3
问题

计算包含 n n n 个左括号和 n n n 个右括号的合法括号序列种数。

合法括号序列定义:

  1. 空串为合法序列。

  2. 若 A 为合法序列,那么 (A) 为合法序列。

  3. 若 A,B 均为合法序列,那么 AB 为合法序列。

分析

显然在任何位置,左括号的个数一定大于等于右括号的个数。

考虑将左括号看作 + 1 +1 +1,右括号看作 − 1 -1 1,那么又转化成了引入中的问题 1,答案是第 n n n 个卡特兰数。


例 4
问题

计算 n n n 个数合法的出栈序列。

分析

法一:将进栈看作 + 1 +1 +1,出栈看作 − 1 -1 1,那么就转化成了引入中的问题 1。

法二:

设答案为 c n c_n cn

显然 c 0 = 1 c_0=1 c0=1

我们考虑 c n c_n cn 怎么得来。

令最后一个出栈的数为 k k k

那么在 k k k 入栈之前, 1 , 2 , ⋯   , k − 1 1,2,\cdots,k-1 1,2,,k1 k − 1 k-1 k1 个数已经入栈并出栈了,方案数为 c k − 1 c_{k-1} ck1

k k k 入栈之后, k + 1 , ⋯   , n − 1 , n k+1,\cdots,n-1,n k+1,,n1,n n − k n-k nk 个数会入栈并出栈,方案数为 c n − k c_{n-k} cnk

故总方案数为 ∑ k = 1 n c k − 1 c n − k = ∑ k = 0 n − 1 c k c n − k − 1 = C n \sum\limits_{k=1}^n c_{k-1}c_{n-k}=\sum \limits_{k=0}^{n-1}c_kc_{n-k-1}=C_n k=1nck1cnk=k=0n1ckcnk1=Cn

转化成引入中的问题 2。


例 5
问题

求将 n + 2 n+2 n+2 条边的凸多边形用不相交的对角线分割成三角形区域的方案数。

分析

如图,我们选定这个多边形的一条边作为基边,那么在每一种划分中这条基边都是一个三角形区域的边,且这个三角形区域将整个多边形分成了三部分:这个三角形区域,一个含有 k + 1 + 1 = k + 2 k+1+1=k+2 k+1+1=k+2 条边的多边形区域,还有一个含有 n + 2 − k − 1 − 1 + 1 = n − k + 1 n+2-k-1-1+1=n-k+1 n+2k11+1=nk+1 条边的区域。

设含 n + 2 n+2 n+2 条边的方案数为 c n c_n cn

那么由分析可知, c n = ∑ k = 0 n − 1 c k c n − k − 1 = C n c_n=\sum\limits_{k=0}^{n-1} c_kc_{n-k-1}=C_n cn=k=0n1ckcnk1=Cn

转化为引入中的问题 2。


例 6
问题

求含有 n n n 个节点的二叉树的个数。

分析

首先固定一个根节点,左子树有 k k k 个节点,那么右子树有 n − k − 1 n-k-1 nk1 个节点。

设答案为 c n c_n cn,那么 c n = Σ k = 0 n − 1 c k c n − k − 1 = C n c_n=\Sigma _{k=0}^{n-1}c_kc_{n-k-1}=C_n cn=Σk=0n1ckcnk1=Cn

转化为引入中的问题 2。


三、公式

  1. 计算式: C n = 1 n + 1 ( 2 n n ) C_n=\dfrac{1}{n+1}\dbinom{2n}{n} Cn=n+11(n2n)
  2. 递推式 1: C 0 = 1 , C n = ∑ k = 0 n − 1 C k C n − k − 1 C_0=1,C_n=\sum\limits_{k=0}^{n-1}C_kC_{n-k-1} C0=1,Cn=k=0n1CkCnk1
  3. 递推式 2: C 0 = 1 , C n = 4 n − 2 n + 1 C n − 1 C_0=1,C_n=\dfrac{4n-2}{n+1}C_n-1 C0=1,Cn=n+14n2Cn1
  4. 增长趋势: C n ∼ 4 n n 3 2 π C_n\thicksim\dfrac{4^n}{n^\frac{3}{2}\sqrt{\pi}} Cnn23π 4n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值