使用Matplotlib绘制3D动画

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jstxzhangrui/article/details/79948374

使用Matplotlib绘制3D动图

主角是FuncAnimation函数,通过不断地调用func函数来实现动画,还可以使用save(filename, writer=None, fps=None, dpi=None, codec=None, bitrate=None, extra_args=None, metadata=None, extra_anim=None, savefig_kwargs=None)来保存动画,下面我们主要讲下FuncAnimation函数的使用

matplotlib.animation.FuncAnimation(fig, func, frames=None, init_func=None, fargs=None, save_count=None, **kwargs)

官方文档

主要参数

  • fig: matplotlib.figure.Figure

    用来画图、变化尺寸或者其他需要的事件的figure对象

  • func: callable

    每一帧调用的函数。

     def func(frame, *fargs) -> iterable_of_artists:

    第一个参数是下一帧的值,任何额外的参数都可以通过fargs参数得到

  • frames: iterable, int, generator function, or None, optional

    用来传递函数和动画的每一帧的数据源,控制帧的迭代

  • init_func : callable, optional

    用来画初始帧的函数,这个函数只会在第一帧之前被调用一次。如果没有给出的话,那么帧序列中的第一帧将会用来替代。
    If blit == True, init_func必须返回可迭代形式

  • fargs: tuple or None, optional

    传递给每一次func调用的额外的参数

  • save_count: int,optional

    从帧到缓存的值的数量

  • interval : number, optional

    帧间距(单位ms),默认200毫秒

  • repeat_delay : number, optional

    动画循环间距,默认None

  • repeat : bool, optional

    动画是否要循环播放,默认为True

  • blit : bool, optional

    控制是否使用blitting来优化绘图

官方示例

"""
============
3D animation
============

A simple example of an animated plot... In 3D!
"""
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
import matplotlib.animation as animation


def Gen_RandLine(length, dims=2):
    """
    Create a line using a random walk algorithm

    length is the number of points for the line.
    dims is the number of dimensions the line has.
    """
    lineData = np.empty((dims, length))
    lineData[:, 0] = np.random.rand(dims)   # 初始化起点
    for index in range(1, length):
        # scaling the random numbers by 0.1 so
        # movement is small compared to position.
        # subtraction by 0.5 is to change the range to [-0.5, 0.5]
        # to allow a line to move backwards.
        step = ((np.random.rand(dims) - 0.5) * 0.1)  # 步长
        # 下一步的位置
        lineData[:, index] = lineData[:, index - 1] + step

    return lineData   # 返回一个shape为(3,25)的数组,3维坐标25帧


def update_lines(num, dataLines, lines):
    for line, data in zip(lines, dataLines):
        # NOTE: there is no .set_data() for 3 dim data...
        line.set_data(data[0:2, :num])
        line.set_3d_properties(data[2, :num])
    return lines

# Attaching 3D axis to the figure
fig = plt.figure()
ax = p3.Axes3D(fig)

# Fifty lines of random 3-D lines  (长为50的数组,每个元素为shape为3,25的ndarray,最后实际效果就是50条路径)
data = [Gen_RandLine(25, 3) for index in range(50)]

# Creating fifty line objects.
# NOTE: Can't pass empty arrays into 3d version of plot()
lines = [ax.plot(dat[0, 0:1], dat[1, 0:1], dat[2, 0:1])[0] for dat in data] # 每条路径的起始点

# Setting the axes properties
ax.set_xlim3d([0.0, 1.0])
ax.set_xlabel('X')

ax.set_ylim3d([0.0, 1.0])
ax.set_ylabel('Y')

ax.set_zlim3d([0.0, 1.0])
ax.set_zlabel('Z')

ax.set_title('3D Test')

# Creating the Animation object
line_ani = animation.FuncAnimation(fig, update_lines, 25, fargs=(data, lines),
                                   interval=50, blit=False)

plt.show()
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页