牛顿迭代法又称为切线法,简单来说就是不断求切线与x轴的交点,来逐渐接近解的迭代过程。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。具体迭代的方法可以看度娘的解释,或者相关的教材。今天来介绍下简单的matlab的实现。
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量
在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。
matlab代码
定义函数
function y=f(x)
y=f(x);%函数f(x)的表达式
end
function z=h(x)
z=h(x);%函数h(x)的表达式,函数h(x)是函数f(x)的一阶导数
end
主程序
x=X;%迭代初值
i=0;%迭代次数计算
while i
x0=X-f(X)/h(X);%牛顿迭代格式
if abs(x0-X)>0.01;%收敛判断
X=x0;
else break
end
i=i+1;
end
fprintf('\n%s%.4f\t%s%d','X=',X,'i=',i) %输出结果
%% This script is to solve a function root.
%% x^2+exp(X)-50=0;
x0=0
f= @(x) x.^2+sin(x)-5;
df=@(x) x*2+cos(x);
for j=1:100
fprintf('values of x and f are %3.6f, %3.3e \n',x0,f(x0))
x=x0-f(x0)/df(x0);
if abs(f(x)) <1e-16
break
else
x0=x;
end
end
fprintf('values of x and f are %3.6f, %3.3e \n',x,f(x))
%% Find roots for f(x)=x^5-2*x^4-10*x^3+20*x^2+9*x-18
clc
cl