完整源代码项目地址,关注博主私信'源代码'后可获取
1.问题描述
使用数组精确计算M/N(0<M<N≤100)的值。假如M/N是无限循环小数,则计算并输出它的第一循环节,同时要求输出循环节的起止位置(小数位的序号)。
2.问题分析
由于计算机字长的限制,常规的浮点运算都有精度限制,为了得到高精度的计算结果,就必须自行设计实现方法。
为了实现高精度的计算,可将商存放在一维数组中,数组中的每个元素存放一位十进制数,即商的第一位存放在第一个元素中,商的第二位存放在第二个元素中,以此类推。这样就可以使用数组来表示一个高精度的计算结果。
进行除法运算时可以模拟人工操作,即每次求出商的第一位后,将余数乘以10,再计算商的下一位,重复以上过程,当某次计算后的余数为0时,表示M/N为有限不循环小数。某次计算后的余数与前面的某个余数相同时,则M/N为无限循环小数,从该余数第一次出现之后所求得的各位数就是小数的循环节。
程序具体实现时,采用了数组和其他一些技巧来保存除法运算所得到的余数和商的各位数。
3.算法分析
在运算过程中,每次得到的余数都要与前面运算过程产生的余数进行比较,看否已经出现过,故余数及商都要存储在数组中。分别定义两个数组remainder[101]和quotient[101],用来存放运算过程中每一步的余数,及得到的每一位商。
被除数、除数分别用变量m、n存储,由题意知m<n。数组元素remainder[m]的下标表示运算过程中得到的余数,remainder[m]=i语句的作用是:记录余数m所存储的位置i,即小数点后的位置。quotient[i]=m/n把第i次相除得到的商存储到数组中下标为i的位置。因每次除完之后,得到的余数肯定比除数n小,所以在下一次进行相除之前余数应先乘以10再运算。代码如下:
remainder[m] = i
m *= 10
quotient[i] = m // n
m = m % n
对得到的余数m进行判断,看m的值是否为0,若为0则说明此分数是有限循环小数,结束循环。若m的值不为0,则要判断此余数是否已经出现过(定义时将数组remainder中元素的值全部初始化为0,若remainder[m]的值为0则说明此余数没有出现过,若值不为0则说明前面已出现过相同的余数,此分数为无限循环小数),若没有出现过则继续相除,若已经出现过则说明分数为无限循环小数,第一个循环节的起始位置为数组quotient[1]的结束位置,数组元素remainder[m]对应的下标i。代码如下:
if m == 0:
j = 1
while j <= i:
print("%d" %quotient[j], end="")
j += 1
break
if remainder[m] != 0:
j = 1
while j <= i:
print("%d" %quotient[j], end="")
j += 1
print("\n分数的第一个循环节:%d" %remainder[m])
print("循环节的起始位置为:%d" %i)
break
4.完整的程序
根据上面的分析,编写程序如下:
if __name__ == "__main__":
remainder = [0]*101
quotient = [0]*101
print("请输入分子与分母大于0,小于等于100的分数")
m = int(input("分子m = "))
n = int(input("分母n = "))
print("输入的分数为:%d/%d" %(m, n))
print("%d/%d 的准确值是:0." %(m, n), end="")
for i in range(1, 101):
remainder[m] = i
m *= 10
quotient[i] = m // n
m = m % n
if m == 0:
j = 1
while j <= i:
print("%d" %quotient[j], end="")
j += 1
break
if remainder[m] != 0:
j = 1
while j <= i:
print("%d" %quotient[j], end="")
j += 1
print("\n分数的第一个循环节:%d" %remainder[m])
print("循环节的起始位置为:%d" %i)
break
请输入分子与分母大于0,小于等于100的分数
输入的分数为:1/6
1/6 的准确值是:0.16
分数的第一个循环节:2
循环节的起始位置为:2