1105. Spiral Matrix (25)
This time your job is to fill a sequence of N positive integers into a spiral matrix in non-increasing order. A spiral matrix is filled in from the first element at the upper-left corner, then move in a clockwise spiral. The matrix has m rows and ncolumns, where m and n satisfy the following: m*n must be equal to N; m>=n; and m-n is the minimum of all the possible values.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N. Then the next line contains N positive integers to be filled into the spiral matrix. All the numbers are no more than 104. The numbers in a line are separated by spaces.
Output Specification:
For each test case, output the resulting matrix in m lines, each contains n numbers. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.
Sample Input:12 37 76 20 98 76 42 53 95 60 81 58 93Sample Output:
98 95 93 42 37 81 53 20 7658 60 76
简单的排列一下数字。
#include<cstdio> #include<vector> #include<queue> #include<string> #include<map> #include<cmath> #include<iostream> #include<cstring> #include<functional> #include<algorithm> using namespace std; typedef long long LL; const int INF = 0x7FFFFFFF; const int maxn = 1e4 + 10; int n, a[maxn], x, y, vis[maxn]; vector<int> c[maxn]; int u[4] = { 0, 1, 0, -1 }; int v[4] = { 1, 0, -1, 0 }; int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); for (int i = 1; i*i <= n; i++) { if (n % i == 0) { x = n / i; y = i; } } for (int i = 1; i <= x; i++) { for (int j = 0; j <= y; j++) c[i].push_back(0); } sort(a, a + n, greater<int>()); int vec = 0, X = 1, Y = 1; for (int i = 0; i < n; i++) { c[X][Y] = a[i]; vis[(X - 1)*y + Y - 1] = 1; if (X + u[vec]>x || X + u[vec] < 1 || Y + v[vec]< 1 || Y + v[vec]>y) vec = (vec + 1) % 4; else if (vis[(X + u[vec] - 1) * y + Y + v[vec] - 1]) vec = (vec + 1) % 4; X += u[vec]; Y += v[vec]; } for (int i = 1; i <= x; i++) { for (int j = 1; j <= y; j++) { printf("%d%s", c[i][j], j == y ? "\n" : " "); } } return 0; }