上一章中,我们已经取出层名,层名和层名之间,是存放参数的空间,这样相当于已经给模型分了层。
我们只要在层间搜索参数就可以了。
第2步:搜索参数
以卷积层为例:
if(startsWith(TorchClassName,"nn.SpatialConvolution"))
{
const char *findstr[] = {
"name", //名称
"dW", "dH", //步长
"kW", "kH", //核宽
"weight", "bias", //权重,偏移
"padW", "padH", //补边(2参数)
"pad_l", "pad_r", "pad_t", "pad_b", //补边(4参数)
"nInputPlane", "nOutputPlane", //输入、输出维度
NULL};
fpos = ftell(m_FilePointer);//记录层开头位置(在文件中)。
for (int i = 0; findstr[i]; i++)
{
fout<<findstr[i]<<":"<<endl;
bool ret=false;
while(!ret){
ret=跳到某字符串位置后(findstr[i]); //注意不要跑到下一层去
if(ret)
ret=readObject(fout);//这里的一些函数可以从OpenCV稍稍修改而来
}
fseek(m_FilePointer, fpos,SEEK_SET);//回到开头位置后再搜索
}
}
上面我们已经把所有参数都保存到一个文件中了。
这里,我们的目的不是拿出所有参数,我们只要拿出卷积层的训练参数 weight,bias,其它在训练前就知道的就不用了
按OpenCV的代码分析几个t7模型,
存放方式分两种,1是统一存放,另1是分别存入
T7存放方式按:数据首址,数据偏移,数据类型
这里就有两种取法,
1。取数据(OpenCV方式)
2。取地址(=数据首址+数据偏移x sizeof(数据类型))
取地址方式应该灵活一点
取数据偏移:
void readTorchTensor(ofstream &fout, int typeTensor,const char * ch_str)
{
int ndims = readInt();
my_readLongRaw(fout, ndims);//读取长原始数据//THFile_readLongRaw
my_readLongRaw(fout, ndims);
int64_t offset = readLong() - 1;
fout<<"偏移:"<<offset<<endl;
if(this_norm_conv==is_conv)
{
if(strcmp(ch_str,"weight")==0)
*file_data_offset.weight_offset =(long)offset;//权重数据偏移 <--这里
else if(strcmp(ch_str,"bias")==0)
*file_data_offset.bias_offset =(long)offset;//偏移数据偏移 <--这里
}
//read Storage
int typeidx = readInt();
//fout<<"typeidx:"<<typeidx<<endl;
assert(typeidx == TYPE_TORCH || (typeidx == TYPE_NIL && ndims == 0));
if (typeidx == TYPE_NIL)
{
return;
}
int indexStorage = readInt();
{
string className = readTorchClassName();
fout<<"className:"<<className<<endl;
int typeStorage = parseStorageType(className);
readTorchStorage(fout, typeStorage);
}
}
取首址和类型:
void my_readDoubleRaw(ofstream &fout, int64_t size)
{
//double data;
fout<<"尺寸:"<<size<<endl;
fout<<"地址:"<<ftell(m_FilePointer)<<endl;
if(this_norm_conv==is_conv)
file_data_offset.data_offset=ftell(m_FilePointer);//数据首址 <--这里
file_data_offset.data_type=sizeof(double);//数据类型 <--这里
// for (int64_t i = size - 1; i >= 0; i--)
// {
// fread(&data, sizeof(double), 1, m_FilePointer);
//fout<<data<<' ';
// }fout<<endl;
}
void my_readFloatRaw(ofstream &fout, int64_t size)
{
//float data;
fout<<"尺寸:"<<size<<endl;
fout<<"地址:"<<ftell(m_FilePointer)<<endl;
if(this_norm_conv==is_conv)
file_data_offset.data_offset=ftell(m_FilePointer);//数据首址 <--这里
if(this_norm_conv==is_norm)
file_InstanceNormalization_data_offset.data_offset=ftell(m_FilePointer);
if(this_norm_conv==is_batchnorm)
file_SpatialBatchNormalization_data_offset.data_offset=ftell(m_FilePointer);
file_data_offset.data_type=sizeof(float);//数据类型 <--这里
// for (int64_t i = size - 1; i >= 0; i--)
// {
// fread(&data, sizeof(float), 1, m_FilePointer);
//fout<<data<<' ';
// }fout<<endl;
}
这些函数都是从OpenCV中抄过来再稍改改, my_ 对应 THFile_
然后组合:
// 还要加上文件位置
if(strcmp(ch_str,"weight")==0)
{
*file_data_offset.weight_offset *= file_data_offset.data_type;//乘 类型 <--这里
*file_data_offset.weight_offset++ += file_data_offset.data_offset;//加 数据首址 <--这里
}
else if(strcmp(ch_str,"bias")==0)
{
*file_data_offset.bias_offset *= file_data_offset.data_offset;
*file_data_offset.bias_offset++ += file_data_offset.data_offset;
}
这里用到地址池:
struct Data位置
{
long data_offset;
long * weight_offset;
long * bias_offset;
int data_type;
//构造函数
Data位置();
};
Data位置::Data位置()
{
data_offset=0;
weight_offset=NULL;
bias_offset=NULL;
data_type=0;
}
Data位置 file_data_offset;
使用时用:
long *weight_offset=new long[2+2+4+1 ];
long *bias_offset=new long[2+2+4+1 ];
string pathname ="D:/3D/cv33/cv33/AdaIN-style-master/models/";
string torch_model_name ="vgg_normalised.t7";
//decoder-content-similar 解码器颜色和内容相似
//decoder
pathname += torch_model_name;
loadModel_data_offset(pathname,weight_offset,bias_offset);
loadModel_data_offset函数:
void loadModel_data_offset(string torch_model_name,long * weight_offset,long * bias_offset)
{
file_data_offset.weight_offset=weight_offset;
file_data_offset.bias_offset=bias_offset;
readModel(torch_model_name);
}
这样就已经从t7模型取出训练数据了。