让你的公众号拥有AI能力--微信对话开放平台

前段时间,微信上线了一个「微信对话开放平台」,旨在以对话交互为核心, 为有客服需求的个人、企业和组织提供智能业务服务与用户管理能力的技能配置平台,可利用提供的工具自主完成客服机器人的搭建。今天就来介绍一下这个对话开放平台,并通过简单的教程,让你的公众号具有 AI 能力。

一、创建机器人

1、登陆

官网:https://openai.weixin.qq.com

打开上述官网,点击「开始使用」或者右上角的「登录」,即可使用微信扫码登录系统。

首页

2、创建机器人

登录之后,再次点击「开始使用」,即可创建机器人,如下图所示。

创建机器人

创建成功后可跳转到机器人技能页面。

技能页面

二、机器人技能

机器人技能分为三部分,下面我们将一一说明。

1、系统对话技能

首先,我们将技能页面右侧的「系统对话技能全部打开」,如下图所示。

系统对话技能

机器人调试

点击右上角的「机器人调试」,即可进入调试模式。

机器人调试

可以参考示例,对机器人进行不同技能的测试,如下图所示。

技能测试

发布

机器人调试无误之后,关闭调试窗口,点击右上角的「发布」,在弹出窗口里点击「执行发布」,即可将已有技能发布。

发布

执行发布

「机器人调试」和「发布」在后续的技能中都要用到,只有发布之后的技能,才能让用户使用。

2、普通技能

为了演示普通技能的创建和使用,这里我们创建一个关键字回复的技能,跟公众号的关键字回复类似。

选中「普通技能」,点击「创建技能」,下面所有涉及到阀值的,我们都选 1。

创建技能

输入技能的名称,点击确定。

输入技能名称

然后会跳转至技能配置页面,点击「新建问答」,创建一个问答。

新增问答

然后在用户问法里添加用户问法,并回车确认,这里我们添加「菜单」两个字。

添加问法

然后添加机器人回答,选择「添加」,再选择「文本」,输入要回答的内容。

机器人回答

配置完成后,点击页面右上角的「保存配置」,保存成功后再进行「机器人调试」,调试无误后即可「发布」。

测试普通技能

3、高级技能

高级技能的创建与普通技能类似,且多了几个功能:

  • 多轮回复
  • 服务接口调用
  • 自定义接口

我创建了两个高级技能,「垃圾分类」和「生成诗词」,使用效果如下。

生成诗词使用效果

技能配置如下,供参考。

高级技能

垃圾分类配置

三、授权公众号

技能都配置好了,接下来就是让公众号拥有这些技能了,微信对话开放平台提供了绑定公众号的功能,具体操作如下。

点击左上角的「设置」,选择「服务接入」,点击「绑定公众号」,在弹出的窗口里,绑定自己的公众号即可。

设置

绑定公众号

现在,访问你的公众号,回复「菜单」,就可以有机器人自动回复了,高级技能也是如此。

参考文档

官方文档:
https://developers.weixin.qq.com/doc/aispeech/platform/INTRODUCTION.html

教学视频:https://support.qq.com/products/61913/faqs/54118

思考

通过简单的设置,就可以让你的公众号拥有机器人,而且是微信官方开发的,兼容性好,开发工作量小,而且基于高级技能,可以开发出很多想不到的功能,值得一试。

访问「微信官方文档」,目前有 5 款产品,分别是:

  • 小程序
  • 小游戏
  • 公众号
  • 智能对话
  • 开放平台

微信官方文档

智能对话是近期加入的,而观察其他几个产品,无一不是风生水起,所以个人预测,「智能对话」将来也是一个可以产生新红利的产品。

最后,关注我的公众号就可以体验上面的技能了,欢迎扫描下方二维码进行体验。

欢迎访问的个人博客:掘墓人的小铲子

### 集成 DeepSeek-R1 到微信构建智能聊天机器人的方法 为了实现这一目标,主要涉及两个部分的工作:一是部署并运行 DeepSeek-R1 模型作为服务端;二是开发能够与微信平台交互的应用程序接口(API),以便接收消息请求并将回复发送回给用户。 #### 服务器端设置 对于服务器端而言,推荐采用云服务平台(如阿里云、腾讯云等),因为它们提供了易于使用的容器化解决方案以及GPU支持,这对于加速大型语言模型推理至关重要。安装必要的依赖项之后,可以通过加载预训练好的 DeepSeek-R1 权重文件启动一个HTTP API服务[^1]: ```bash pip install torch transformers flask ``` 接着编写简单的Flask应用来提供预测功能: ```python from flask import Flask, request, jsonify import torch from transformers import AutoModelForCausalLM, AutoTokenizer app = Flask(__name__) tokenizer = AutoTokenizer.from_pretrained("path/to/deepseek-r1") model = AutoModelForCausalLM.from_pretrained("path/to/deepseek-r1").to('cuda') @app.route('/predict', methods=['POST']) def predict(): input_text = request.json['text'] inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response": response}) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080) ``` 此代码片段展示了如何利用 `transformers` 库加载本地存储的 DeepSeek-R1 模型,并通过 POST 请求的方式接受输入文本,返回由模型生成的回答。 #### 微信小程序/公众号对接 为了让这个AI助手能够在微信环境中工作,需要注册成为开发者并通过微信公众平台获取相应的权限。创建自定义菜单或自动回复规则时可以选择调用上述提到的服务端API来进行对话处理[^2]。 具体来说,在接收到用户的任何消息后,应该将其转发至已搭建好的 HTTP API 进行自然语言理解(NLU)解析和响应生成,然后再把得到的结果封装成合适的XML格式反馈回去。 此外,还可以考虑使用第三方中间件简化整个流程,比如 WeRoBot 或者 wxpy 等 Python 库可以帮助快速建立基于事件驱动的消息处理器。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值