行相等的最少多米诺旋转--贪心算法

这篇博客介绍了如何利用贪心算法解决LeetCode中的行相等的最少多米诺旋转问题。通过选择一个基准多米诺,遍历数组检查是否所有骨牌都能匹配,从而确定最小旋转次数。如果存在不匹配情况,则返回-1。代码和详细解题思路都在文中分享。
摘要由CSDN通过智能技术生成

LeetCode

行相等的最少多米诺旋转

在一排多米诺骨牌中,A[i] 和 B[i] 分别代表第 i 个多米诺骨牌的上半部分和下半部分。(一个多米诺是两个从 1 到 6 的数字同列平铺形成的 —— 该平铺的每一半上都有一个数字。)

我们可以旋转第 i 张多米诺,使得 A[i] 和 B[i] 的值交换。

返回能使 A 中所有值或者 B 中所有值都相同的最小旋转次数。

如果无法做到,返回 -1.

示例1:

输入:A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
输出:2
解释:
图一表示:在我们旋转之前, A 和 B 给出的多米诺牌。
如果我们旋转第二个和第四个多米诺骨牌,我们可以使上面一行中的每个值都等于 2,如图二所示。

示例2:

输入:A = [3,5,1,2,3], B = [3,6,3,3,4]
输出:-1
解释:
在这种情况下,不可能旋转多米诺牌使一行的值相等。

解法:贪心算法

解题思路:我们只要选择第一张多米诺骨牌,即A[0],B[0],然后遍历两个数组,只要有一个张多米诺骨牌即A[i],B[i]不等于A[0]或者B[0],说明没办法构成行相等,因此返回-1,否则分别记录骨牌的旋转次数

代码如下:

class Solution {
    public int check(int x, int[] A, int[] B, int n) {
        //x是A[0]或者B[0]
        int rotations_a = 0, rotations_b = 0; //分别表示旋转的次数
        for (int i = 0; i < n; i++) {
            if (A[i] != x && B[i] != x) return -1;
            //如果一张多米诺骨牌上下都不等于x,说明没法构成行相等
            else if (A[i] != x) rotations_a++; 
            //A[i]不等于x,说明要使A都等于x,就要将下面的B[i]旋转上来,旋转次数+1
            else if (B[i] != x) rotations_b++; //同理
        }
        return Math.min(rotations_a, rotations_b); //返回较小的旋转次数
    }

    public int minDominoRotations(int[] A, int[] B) {
        int n = A.length;
        int rotations = check(A[0], B, A, n);
        if (rotations != -1 || A[0] == B[0]) return rotations;
        else return check(B[0], B, A, n);
    }
}

题目以及解法来源

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-domino-rotations-for-equal-row
code-cn.com/problems/minimum-domino-rotations-for-equal-row
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值