LeetCode
行相等的最少多米诺旋转
在一排多米诺骨牌中,A[i] 和 B[i] 分别代表第 i 个多米诺骨牌的上半部分和下半部分。(一个多米诺是两个从 1 到 6 的数字同列平铺形成的 —— 该平铺的每一半上都有一个数字。)
我们可以旋转第 i 张多米诺,使得 A[i] 和 B[i] 的值交换。
返回能使 A 中所有值或者 B 中所有值都相同的最小旋转次数。
如果无法做到,返回 -1.
示例1:
输入:A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
输出:2
解释:
图一表示:在我们旋转之前, A 和 B 给出的多米诺牌。
如果我们旋转第二个和第四个多米诺骨牌,我们可以使上面一行中的每个值都等于 2,如图二所示。
示例2:
输入:A = [3,5,1,2,3], B = [3,6,3,3,4]
输出:-1
解释:
在这种情况下,不可能旋转多米诺牌使一行的值相等。
解法:贪心算法
解题思路:我们只要选择第一张多米诺骨牌,即A[0],B[0],然后遍历两个数组,只要有一个张多米诺骨牌即A[i],B[i]不等于A[0]或者B[0],说明没办法构成行相等,因此返回-1,否则分别记录骨牌的旋转次数
代码如下:
class Solution {
public int check(int x, int[] A, int[] B, int n) {
//x是A[0]或者B[0]
int rotations_a = 0, rotations_b = 0; //分别表示旋转的次数
for (int i = 0; i < n; i++) {
if (A[i] != x && B[i] != x) return -1;
//如果一张多米诺骨牌上下都不等于x,说明没法构成行相等
else if (A[i] != x) rotations_a++;
//A[i]不等于x,说明要使A都等于x,就要将下面的B[i]旋转上来,旋转次数+1
else if (B[i] != x) rotations_b++; //同理
}
return Math.min(rotations_a, rotations_b); //返回较小的旋转次数
}
public int minDominoRotations(int[] A, int[] B) {
int n = A.length;
int rotations = check(A[0], B, A, n);
if (rotations != -1 || A[0] == B[0]) return rotations;
else return check(B[0], B, A, n);
}
}
题目以及解法来源
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-domino-rotations-for-equal-row
code-cn.com/problems/minimum-domino-rotations-for-equal-row
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。