基于Kmeans聚类算法实现图像分割(从原理开始实现)

本文详细介绍了基于K-Means算法的图像分割原理和步骤,从彩色图像的三维空间坐标出发,阐述了算法流程,包括加载图像、初始化簇心、迭代更新直至满足停止条件。通过代码实现展示了从初始化、迭代到最终的图像分割结果,验证了结果与OpenCV API的一致性。尽管经典KMeans在大数据处理中速度较慢,但对彩色图像分割,其性能可接受。

一、Kmeans聚类算法基本原理
K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。
以彩色图像为例:基于彩色图像的RGB三通道为xyz轴建立空间直角坐标系,那么一副图像上的每个像素点与该空间直角坐标系建立了一 一映射(双射)的关系。
从空间直角坐标系中随机取 k 个点,作为 k 个簇的各自的中心。计算所有像素点到k个簇心的距离,并将所有像素点划分至与其距离最小的簇类。自此聚类完成。其中,距离定义为欧氏距离:
在这里插入图片描述
其中r,g,b分别表示红绿蓝三通道,r1,g1,b1为彩色图片中某像素点;r0,g0,b0表示某簇类的簇心。
二、基于Kmeans图像分割算法流程
Note:彩色图像的操作是基于一个三维空间
1、加载图像,获取图像的所有像素点并将其转换为样本数据。
2、开始迭代
a)、初始化簇心坐标。
a)、更新簇心坐标,遍历样本数据中的数据点并计算数据点与所有簇心的距离。对于某数据点计算得到的与所有簇类的欧氏距离中,取欧氏距离最小所对应的簇类作为该数据点对应的类。
c)、计算更新后的簇心坐标与更新前的簇心坐标的均方误差。若均方误差仍大于某阈值,则重复b),反之结束迭代。
Kmeans的详细算法流程参考博文:
https://www.cnblogs.com/pinard/p/6164214.html
三、代码主函数部分
1、加载图片

	Mat src, dst;
	src = imread("J20.jpg");
	namedWindow("输入图像", WINDOW_AUTOSIZE);
	imshow("输入图像", src);

2、初始化颜色(图像分割后需要上色)

	Scalar colorTab[] = {
   
   
		Scalar(0,0,255),
		Scalar(0,255,0),
		Scalar(255,0,0),
		Scalar(0,255,255),
		Scalar(255,0,255),
	};

3、初始化簇类数,并将所有的像素点全部转换为样本数据

	int sampleCount = width*height;
	int clusterCount = 5;
	Mat points(sampleCount, dims, CV_32F, Scalar(10));
	//将彩色图像的像素点转换为样本数据
	int index = 0;
	for (int row = 0; row < height; row++)
	{
   
   
		for (int col = 0; col < width; col++)
		{
   
   
			index = row*width + col;
			Vec3b bgr = src.at<Vec3b>(row, col);
			points.at<float>(index, 0) = static_cast<int>(bgr[0]);//b
			points.at<float>(index, 1) = static_cast<int>(bgr[1]);//g
			points.at<float>(index, 2) = static_cast<int>(bgr[2]);//r
		}
	}

4、利用Kmeans算法对样本数据分类

	centers, feature = Kmeans(points, clusterCount, sampleCount);

5、
显示图像分割后的结果

	//显示图像分割结果
	Mat result = Mat::zeros(src.size(), src.type());
	int index1 = 0;
	for (int row = 0; row < height; row++)
	{
   
   
		for (int col = 0; col < width; col++)
		{
   
   
			index1 = row*width + col;
			int label = feature.at<float>(index1, 3);
			result.at<Vec3b>(row, col)[0] = colorTab[label][0];
			result.at<Vec3b>(row, col)[1] = colorTab[label][1];
			result.at<Vec3b>(row, col)[2] = colorTab[label][2];
		}
	}
	imshow("基于Kmeans聚类的图像分割", result);

四、代码子函数部分
1、初始化聚类中心

	//初始化簇心
	Mat centers = Mat::zeros(clusterCount, 1, CV_32FC3);//4行3列
	centers.at<float>(0, 0) = 150;
	centers.at<float>(0, 1) = 180;
	centers.at<float>(0, 2) = 200;

	centers.at<float>(1, 0) = 20;
	centers.at<float>(1,</
运用K-means算法进行图像分割, K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的 公式 公式 影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已经收敛。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束 具体如下: 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i; (3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数; (4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。 折叠工作原理 K-MEANS算法的工作原理及流程 K-MEANS算法 输入:聚类个数k,以及包含 n个数据对象的数据库。 输出:满足方差最小标准的k个聚类
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值