来自本人百度博客 2011-10-28 14:52
问题描述:
迷宫问题
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 3577
Accepted: 2093
Description
定义一个二维数组:
int maze[5][5] = {
0, 1, 0, 0, 0,
0, 1, 0, 1, 0,
0, 0, 0, 0, 0,
0, 1, 1, 1, 0,
0, 0, 0, 1, 0,
};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
Input
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
Output
左上角到右下角的最短路径,格式如样例所示。
Sample Input
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
Sample Output
(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)
算法与数据结构:
本题不需要特别的数据结构,按照本来的棋盘存储即可。
算法非常简单,最标准的款搜。这里简单讲一下BFS:
BFS全称是Breadth First Search,顾名思义按照宽度优先搜索。宽度是跟深度相对的,决策的次数就是深度,而同一次决策的各种情况则为宽度(这只是一种形象的说法,标准定义大家去问《导论》吧~)。为了实现BFS,我们需要构造一个队列,将新的决策不断加入对位,每次需要搜索下一个决策时,弹出队头。为什么这样的结构能够搜索到最优解,大家可以自己研究研究~~^_^。对于本题,我们可以预先做些事情,比如处理好四个方向坐标的改变量,下面代码中大家就会看到。当然,如果直接强行的搜,大概可以到4^25这个数量级。我们可以看一下题目,注意到,在队列中,一个格子只能够出现一次,如果某格子在队中第二次出现的话,可以证明,着一定不是最优解。在搜索时,只要格子入队,就把它的值变为“1”。
Course code:
#include<iostream>
using namespace std;
int di[4][2]={{-1,0},{0,1},{1,0},{0,-1}}; //四个方向上的值
int maze[7][7],dui[1000000][3],h,t;//maze是迷宫,dui是队列,完全不用开那么大,dui[][0]
//是x坐标,dui[][1]是y坐标,dui[][2]存储父节点,h是
//头指针,t是尾指针
int print(int a)
{//这是最后输出的函数,用一种递归的方法非常方便。
if (dui[a][2]>0)
print(dui[a][2]);//利用dui[][2]打印前面的坐标
cout<<"("<<dui[a][0]<<", "<<dui[a][1]<<")"<<endl;//打印本点的坐标
return 0;
}
int main()
{
int i,j,k;
for (i=0;i<5;i++)//读入迷宫
for (j=0;j<5;j++) cin>>maze[i][j];
h=0; t=1;//初始化队列
dui[1][0]=0;
dui[1][1]=0;
dui[1][2]=0;
maze[0][0]=1;
while (h!=t)//bfs
{
h++;//弹出对头
if (dui[h][0]==4&&dui[h][1]==4)//循环结束
{
print(dui[t][2]);
cout<<"("<<dui[t][0]<<", "<<dui[t][1]<<")";//因为poj猥琐的格式,最后一
//行单独打印,后面没有换行
break;
}
for (i=1;i<=4;i++)//搜索四个方向进行决策
{
int tmpx=dui[h][0]+di[i][0];
int tmpy=dui[h][1]+di[i][1];
if (tmpx>=0&&tmpx<=4&&tmpy>=0&&tmpy<=4&&maze[tmpx][tmpy]==0)
{//入队操作
t++;
dui[t][0]=tmpx;
dui[t][1]=tmpy;
dui[t][2]=h;
maze[tmpx][tmpy]=1;
}
}
}
return 0;
}