讲讲中心极限定理

本文介绍了统计学中的中心极限定理,通过实例解释了如何从总体数据中抽取样本并分析样本均值的分布。随着样本量的增加,样本均值趋向于正态分布,这一现象可用于估计总体均值,如用抽样均值估算北京市的平均工资。
摘要由CSDN通过智能技术生成

总第202篇/张俊红

今天我们来聊聊统计学里面比较重要的一个定理:中心极限定理,中心极限定理是指:现在有一个总体数据,如果从该总体数据中随机抽取若干样本,重复多次,每次抽样得到的样本量统计值(比如均值)与总体的统计值(比如均值)应该是差不多的,而且重复多次以后会得到多个统计值,这多个统计值会呈正态分布。还是直接来看例子吧。

import numpy as np
import pandas as pd
import seaborn as sns
data = np.random.rand(10000)
sns.distplot(data)

上面代码是用来生成10000个随机数的,并绘制分布图。通过分布图可以看出,这10000个随机数基本是均等分布,也就是每个值出现的概率差不多。

现在我们从这10000个样本中随机抽取若干个样本(30、50、100、500),重复抽取100次,会得到100个样本均值,然后绘制样本均值分布图。

plt.figure(figsize = (9,9))
plt.subplot(221)
samp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊红的数据分析之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值