CFgym:Outer space invaders(区间dp)


题意:N个飞船,分别需要在时间[ai,bi]内打它下来,距离你di,每次发射武器消耗的能量为di,问将所有飞船打下来消耗的最小能量。

思路:建立坐标轴,横轴为时间,纵轴为距离,跟那个用最少直线穿过所有线段一样,从距离最远的线段开始考虑就行,dp[i][j]表示消灭完全包含在i,j里的飞船消耗的最少能量,dp[i][j] = min(dp[i][k-1]+dp[k+1][j]+h[t]),t为当前区间内最远的线段,k为该线段上的枚举使时间点,飞船的时间需要先离散化。

//reference:WeAreATeam
# include <bits/stdc++.h>
using namespace std;
struct node
{
    int s, e, h;
}o[310];
int Li[610], dp[610][610];
int main()
{
    int t, n;
    scanf("%d",&t);
    while(t--)
    {
        int cnt = 0;
        scanf("%d",&n);
        for(int i=0; i<n; ++i) scanf("%d%d%d",&o[i].s,&o[i].e,&o[i].h);
        for(int i=0; i<n; ++i) Li[cnt++] = o[i].s, Li[cnt++] = o[i].e;
        sort(Li, Li+cnt);
        cnt = unique(Li, Li+cnt)-Li;
        for(int i=0; i<n; ++i)
        {
            o[i].s = lower_bound(Li, Li+cnt, o[i].s)-Li+1;
            o[i].e = lower_bound(Li, Li+cnt, o[i].e)-Li+1;
        }
        for(int len=1; len<=cnt; ++len)
        {
            for(int i=1; i+len<=cnt; ++i)
            {
                int j = i+len, id = -1;
                for(int k=0; k<n; ++k)
                {
                    if(o[k].s >= i && o[k].e <= j && (id==-1||o[id].h < o[k].h)) id = k;
                }
                if(id == -1) {dp[i][j]=0; continue;}
                dp[i][j] = 0x7fffffff;
                for(int k=o[id].s; k<=o[id].e; ++k)
                    dp[i][j] = min(dp[i][j], dp[i][k-1]+dp[k+1][j]+o[id].h);
            }
        }
        printf("%d\n",dp[1][cnt]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值