Problem
Central Europe Regional Contest 2014
vjudge.net/problem/Gym-100543L
Meaning
有 n 个敌人,第 i 个将在
ai
时间出现、
bi
时间开枪、距离为
di
。
你有一种炸弹,可随意设置爆炸范围 R,引爆后在 R 以内的、已经出现的敌人会被炸死,消耗 R 格燃料。
要在任何一个敌人出现后、开枪前([
ai
,
bi
])消灭他,问最小消耗。
Analysis
当时的错误想法:先按(
ai
,
bi
)字典序排序,然后dp:
dp[i]:及时搞掂前 i 个敌人的最小消耗
对于最后一个敌人 i,可能跟着最后的若干的敌人一起被炸,于是转移:
dp[i] = min { dp[j] + cost( j+1 , i ) | 0<=j<i }
其中 cost( j+1 , i )
是从第 j+1 个到第 i 个敌人里最远的距离(因为是一起炸),且要满足条件:min {
bj+1
, … ,
bi−1
}
≥ai
,这样才能等在一起炸。
但这样是错的,排序有毒,有考虑不到的情况,如反例:
1
3
1 4 10
2 2 1
3 4 11
这样是要 1、3 一起炸,2 单独炸。
官方题解是把敌人理解成一条条从(
ai
,
di
)到(
bi
,
di
)的水平线段,炸弹就是从(
xi
, 0)到(
xi
, R)的竖直线段,横线被竖穿过就是敌人被炸弹炸到。
于是把所有时刻(a 和 b)离散化后,用区间dp:
dp[s][e]:与所有完全包含在时间段 [ s , e ] 内的所有横线的最小竖线长度和
(暂时没完全理解 :( …)
Accepted Code
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 300, D = 10000, BIG = N * D;
struct node
{
int a, b, d;
} al[N];
int ts[N<<1|1], dp[N+1<<1][N+1<<1] = {{0}};
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
int m = 0;
for(int i = 0; i < n; ++i)
{
scanf("%d%d%d", &al[i].a, &al[i].b, &al[i].d);
ts[++m] = al[i].a;
ts[++m] = al[i].b;
}
sort(ts + 1, ts + m + 1);
m = unique(ts + 1, ts + m + 1) - ts - 1;
for(int i = 0; i < n; ++i)
{
al[i].a = lower_bound(ts + 1, ts + m + 1, al[i].a) - ts;
al[i].b = lower_bound(ts + 1, ts + m + 1, al[i].b) - ts;
}
for(int w = 0; w < m; ++w)
for(int s = 1; s + w <= m; ++s)
{
int e = s + w, id = -1;
for(int i = 0; i < n; ++i)
if(s <= al[i].a && al[i].b <= e && (id == -1 || al[i].d > al[id].d))
id = i;
if(id == -1)
{
dp[s][e] = 0;
continue;
}
dp[s][e] = BIG;
for(int k = al[id].a; k <= al[id].b; ++k)
dp[s][e] = min(dp[s][e], dp[s][k-1] + al[id].d + dp[k+1][e]);
}
printf("%d\n", dp[1][m]);
}
return 0;
}
Wrong DP
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 300;
struct node
{
int a, b, d;
bool operator < (const node &rhs) const
{
return a == rhs.a ? b < rhs.b : a < rhs.a;
}
} arr[N+10];
int dp[N+10];
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
for(int i=1; i<=n; ++i)
scanf("%d%d%d", &arr[i].a, &arr[i].b, &arr[i].d);
sort(arr + 1, arr + n + 1);
dp[0] = 0;
for(int i=1; i<=n; ++i)
{
dp[i] = dp[i-1] + arr[i].d;
int r = arr[i].d;
for(int j=i-1; j; --j)
{
if(arr[j].b < arr[i].a)
break;
r = max(r, arr[j].d);
dp[i] = min(dp[i], dp[j-1] + r);
}
}
printf("%d\n", dp[n]);
}
return 0;
}