机器学习中常用的评价指标(Performance Measures)

本文介绍了机器学习中常用的评价指标,包括混淆矩阵、准确率、精确率、召回率、F1分数以及ROC曲线和AUC值。详细阐述了这些指标的定义、计算方式及其在评估模型性能时的作用,帮助理解如何衡量分类模型的优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习中常用的评价指标

混淆矩阵

混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。 [1] 在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类相比较计算的。(From 百度百科)

预测为正类 预测为负类
真实为正类 True Positive(TP) False Negative(FN)
真实为负类 False Positive(FP) True Negative(TN)

其中,TP- 将正类预测为正类,TN- 将负类预测为负类;
FN- 将正类预测为负类,FP- 将负类预测为正类。

备注多分类下计算 应用多分类问题,把每个类别单独视为”正“,所有其它类型视为”负“,

准确率(Accuracy)

准确率(正确率)=所有预测正确的样本/总的样本
a c c = T P + T N T P + F P + F N + T N acc = \frac{TP+TN}{TP+FP+FN+TN} acc=TP+FP+FN+TNTP+TN

精确率(Precision)

精确率= 将正类预测为正类 / 所有预测为正类
p r e c i s i o n = T P T P + F P precision=\frac{TP}{TP+FP} precision=TP+FPTP

召回率(Recall)

召回率 = 将正类预测为正类 / 所有正真的正类
r e c a l l = T P T P + F N recall = \frac{TP}{TP+FN} recall=TP+FNTP

其他一些不常用简单指标

  • Balanced Error Rate(BER)
    计算公式 B E R = 0.5 ∗ ( F P T P +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值