data.groupby('提交型号').describe().reset_index()
data31.groupby(['提交型号','城市']).count().reset_index()
- 通过groupby()获取到一组数据,例如类别的频次 均值等,便于后续数据筛选
sns.set(style='darkgrid',context='talk',font='SimHei')
plt.subplots(figsize= (12,10))
plt.title('回收均价前三十位')
sns.barplot(data10['mean'],data10['型号'],palette='pastel')
x_tick = np.arange(0,2400,200)
plt.xticks(x_tick)
- 设置X轴的刻度, 利用np.arange() 构建数组,设置plt.xticks()
plt.subplots(figsize= (12,8))
x= data2['index']
y= data2['成交年份']
rects1=plt.bar(x, y, width=0.8,label='Jacobi',alpha=0.8,color='orange')
for rect in rects1:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width()/2, height+1, height, ha="center", va="bottom",fontsize=17)
- plt.bar() 展示数据标签的一种方式
data13= data12[data12['提交型号'].isin(data5.index)]
- data5.index 包含了特定的类别; 用isin() 来筛选 【‘提交型号’】里包含特定类别的数据
bool1 =data6.index.str.contains('AXON') | data6.index.str.contains('Axon') | data6.index.str.contains('天机')
data7 =data6[bool1]
data8= data6[~bool1]
- 筛选data6.index 中是否包含特定的字符, 多个字符 | ;bool 1 返回的是[False, False, False, True, True] ,然后利用data6[bool1] 筛选出特定的类别
fig, ax1 = plt.subplots( figsize=(18,10))
sns.set(style='darkgrid',context='talk',font='SimHei')
sns.despine()
plt.yticks(ticks=ytick)
plt.title('回收价格分布')
sns.catplot(x='提交型号',y='成交订单金额',data=data23,kind="box",ax=ax1)
ax1.set_xticklabels(ax1.get_xticklabels(), rotation=-90)
- ax1.set_xticklabels(ax1.get_xticklabels(), rotation=-90) 将X轴坐标轴的 标签文字旋转 -90度