python画词云图(电商评论数据)

通过对天猫平台上风衣商品的14676条用户评论进行数据分析与处理,利用Python的jieba分词库及pytagcloud词云库生成词云图,展示了消费者对于风衣产品的关注点和评价倾向。

最近采集了天猫上搜索页面关于风衣的宝贝信息以及14676条评论数据。于是就想着做个关于评论数据的词云图看看
先来看看效果图:


这里写图片描述
从上图可以看出衣服、好、质量、不错、喜欢等关键词的较大,说明这些宝贝在天猫上应该是卖的比较好的。下面记录具体的实现过程。
[TOC]

数据预览:

这里写图片描述
python版本3.4.4;分词库:jieba;词云图库:pytagcloud

数据预处理:数据读入、分词

import pandas as pd
from pandas import DataFrame,Series
import numpy as np
import jieba
from ciyuntu_class import ciyuntu_class
cyt = ciyuntu_class()
from pytagcloud import make_tags,create_tag_image
from random import sample
comment = pd.read_csv('电商评论数据.csv',encoding='gbk')
应为有1W多条评论数据,全部分词的话需要耗费许多时间,于是在全部评论数据中随机抽取了5000条评论数据进comment = comment.drop(['Unnamed: 0'],axis=1)
# df_comment = comment[['评价内容']].ix[0:30]
index_5000 = sample(list(comment.index),5000)
df_comment = comment[['评价内容']].ix[index_5000]
df_comment.index = range(df_comment.shape[0])
分词
# 分词
df_freq = cyt.fenci(df_comment.ix[0][0])
# 转换成数据框
df_freq = cyt.sta_list(df_freq)
for i in range(df_comment.shape[0])[1:]:
    print(i)
    try:
        df_freq0 = cyt.fenci(df_comment.ix[i][0])
        df_freq0 = cyt.sta_list(df_freq0)
        # 合并数据框
        df_freq = cyt.bind_df(df_freq,df_freq0)
    except:
        print(df_comment.ix[i][0])
        pass
画词云图

# 画词云图
tuple_list = cyt.df2tuple_list(df_freq)
tags = make_tags(tuple_list,maxsize=80)
create_tag_image(tags,'comment_cloud.png',size=(900,600),fontname='simhei')
总结:

先是选取了1000条评论数据,画出词云图后:这里写图片描述
可以看出一些中性词,像:很、的、都、了、买、也,这些词不能体现出评论人的态度,但是它们的词频却比较大,对结果有干扰,于是在分词的过程中将这些词进行剔除,下面是剔除后的效果图:这里写图片描述
可以看出,剔除后的词云图的主题以及评论的态度信息都比较好的显示在了图中。

<项目介绍> 基于python电商买家评论数据情感分析源码+模型+数据集+代码注释(课程大作业).zip 该资源内项目源码是个人的课设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到94.5分,放心下载使用! 该资源适合计算机相关专业(如人工智能、通信工程、自动化、软件工程等)的在校学生、老师或者企业员工下载,适合小白学习或者实际项目借鉴参考! 当然也可作为毕业设计、课程设计、课程作业、项目初期立项演示等。如果基础还行,可以在此代码基础之上做改动以实现更多功能。 运行: `streamlit run ./Comment_analysis/Streamlit/streamlitEXP.py` 分工:<br> ## 必须考虑的点: 挑选合适的商品(好差评都多,并且评论多) GitHub class 参数(类型啥的,命名方式) 统一规范(代码格式,数据库,完善注释,log) 结合到谁的电脑上谁演示,何种形式ppt/代码 文件夹框架 数据测试集训练集划分 不同的产品(不同特点的卖点,特有的关键),不同品牌的产品(用来比较售后服务优劣等卖点) 评论分数和评论内容的不吻合问题 评论的具体关键(外形外观等) 开发文档开发文档: 需求文档 明确产品功能 分析某一功能点的流程 整合各个功能点--明确分工 接口文档 变更文件 流程(可以单独作为一份文件可以作为附件附在文档中) 情感分数(情感倾向分析,结合score) 装饰器(计时、log)@注解 可视化结果,形化界面(见4) config decorator ## 可以考虑的点: 同一个热水器的评论内容随时间变化 算法优化与提升(比如用不同的包,还可以用多种方法来处理,进行比较分析) 判断优劣coherence/主观判断/通过数据可视化来大致判断,参数优化(主题数/) 找到一个网站据说可以 wordcloud可视化云 bert情感分类 ## 扩展提升的点: texthero可视化 pyLDAvis可视化,通过网页来展示 streamlit+heroku 不用snownlp 机器学习/深度学习 eda 注释掉的代码最后删掉,或者说写明什么时候开启调用
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值