nn.Sequential()

nn.Sequential()介绍

一个序列容器,用于搭建神经网络的模块被按照被传入构造器的顺序添加到nn.Sequential()容器中。除此之外,一个包含神经网络模块的OrderedDict也可以被传入nn.Sequential()容器中。利用nn.Sequential()搭建好模型架构,模型前向传播时调用forward()方法,模型接收的输入首先被传入nn.Sequential()包含的第一个网络模块中。然后,第一个网络模块的输出传入第二个网络模块作为输入,按照顺序依次计算并传播,直到nn.Sequential()里的最后一个模块输出结果。

Pytorch官网举例

看一下Pytorch官网举的例子:

# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

上述两种方法构建出的 model 和 model1 是一样的。

nn.Sequential()的本质作用

按照上边的说法,与一层一层的单独调用模块组成序列相比,nn.Sequential() 可以允许将整个容器视为单个模块(即相当于把多个模块封装成一个模块),forward()方法接收输入之后,nn.Sequential()按照内部模块的顺序自动依次计算并输出结果。

这就意味着我们可以利用nn.Sequential() 自定义自己的网络层。

from torch import nn


class net(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(net, self).__init__()
        self.layer1 = nn.Sequential(nn.Conv2d(in_channel, in_channel / 4, kernel_size=1),
                                    nn.BatchNorm2d(in_channel / 4),
                                    nn.ReLU())
        self.layer2 = nn.Sequential(nn.Conv2d(in_channel / 4, in_channel / 4),
                                    nn.BatchNorm2d(in_channel / 4),
                                    nn.ReLU())
        self.layer3 = nn.Sequential(nn.Conv2d(in_channel / 4, out_channel, kernel_size=1),
                                    nn.BatchNorm2d(out_channel),
                                    nn.ReLU())
        
    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        
        return x

上边的代码,我们通过nn.Sequential()将卷积层,BN层和激活函数层封装在一个层中,输入x经过卷积、BN和ReLU后直接输出激活函数作用之后的结果。

nn.Sequential()和torch.nn.ModuleList的区别在于:torch.nn.ModuleList只是一个储存网络模块的list,其中的网络模块之间没有连接关系和顺序关系。而nn.Sequential()内的网络模块之间是按照添加的顺序级联的。

nn.Sequential()源码

def __init__(self, *args):
        super(Sequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)

nn.Sequential()首先判断接收的参数是否为OrderedDict类型,如果是的话,分别取出OrderedDict内每个元素的key(自定义的网络模块名)和value(网络模块),然后将其通过add_module方法添加到nn.Sequrntial()中。

    # NB: We can't really type check this function as the type of input
    # may change dynamically (as is tested in
    # TestScript.test_sequential_intermediary_types).  Cannot annotate
    # with Any as TorchScript expects a more precise type
    def forward(self, input):
        for module in self:
            input = module(input)
        return input

调用forward()方法进行前向传播时,for循环按照顺序遍历nn.Sequential()中存储的网络模块,并以此计算输出结果,并返回最终的计算结果。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值