BZOJ 1009 KMP,DP,矩阵快速幂

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2…Am(0<=Ai<=9)有M位,不出现是指X1X2…Xn中没有恰好一段等于A1A2…Am. A1和X1可以为
0
Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
4 3 100

111
Sample Output
81
解题方法:
dp[i,j]表示准考证的第I位,和不吉利的数匹配到了第J位的方案数,这个状态的表示也可以看成
当前到第i位了,准考证的后J位是不吉利的数的前J位,的方案数

ans=Σdp[n,i]0<=i<=m1

那么我们考虑怎么转移
假设当前到第I位了,匹配到第J位,也就是dp[i,j]的值我们有了,我们可以枚举第I+1位是什么,
然后通过KMP的NEXT数组可以快速的得到当前枚举的位可以匹配到第几位,假设可以匹配到第P位,
dp[I+1,P]+=dp[I,J]

但是我们看N的数据范围是10^9,所以递推是完不成的,这时候需要观察下规律
我们发现转移时的P,J和I是没有关系的,也就是不管I是几,W[i,j]固定会加到W[i+1,k]上
所以我们换一种转移的方式,之前是用W[I,J]更新W[i,P],现在我们可以写成
dp[i,j]=a0dp[i1,0]+a1dp[i1,1]+......+a(m1)dp[i1,m1]

而且ai数组是不变的,那么这个式子就是“常系数线性齐次递推式”,可以用矩阵乘法优化!

代码如下:

#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i <= b; i++)
const int N = 25;
int n, m, p, fail[N], a[N][N], ans[N][N], c[N][N];
char s[N];
void kmp(){
    fail[1] = 0;
    rep(i, 2, m){
        int p = fail[i-1];
        while(p&&s[p + 1] != s[i]) p = fail[p];
        if(s[p + 1] == s[i]) fail[i] = p + 1;
        else fail[i] = 0;
    }
    for(int i = 0; i < m; i++){
        for(int j = '0'; j <= '9'; j++){
            int p = i;
            while(p && s[p+1] != j) p = fail[p];
            if(s[p+1] == j) a[i][p+1]++;
            else a[i][0]++;
        }
    }
}

int main(){
    scanf("%d%d%d%s", &n, &m, &p, s+1);
    kmp();
    for(int i = 0; i < m; i++) ans[i][i] = 1; //单位矩阵
    while(n){
        if(n&1){
            for(int i = 0; i < m; i++){
                for(int j = 0; j < m; j++){
                    for(int k = 0; k < m; k++){
                        c[i][j] = (c[i][j] + a[i][k] * ans[k][j]) % p;
                    }
                }
            }
            for(int i = 0; i < m; i++){
                for(int j = 0; j < m; j++){
                    ans[i][j] = c[i][j];
                    c[i][j] = 0;
                }
            }
        }
        for(int i = 0; i < m; i++){
            for(int j = 0; j < m; j++){
                for(int k = 0; k < m; k++){
                    c[i][j] = (c[i][j] + a[i][k]*a[k][j]) % p;
                }
            }
        }
        for(int i = 0; i < m; i++){
            for(int j = 0; j < m; j++){
                a[i][j] = c[i][j];
                c[i][j] = 0;
            }
        }
        n >>= 1;
    }
    int sum = 0;
    for(int i = 0; i < m; i++){
        sum = (sum + ans[0][i]) % p;
    }
    printf("%d\n", sum);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值