2017多校第3场 HDU 6065 RXD, tree and sequence LCA,DP

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6065

题意:给一颗有根树,根节点为1,再给定一个排列,长度为n,要求将排列切分成K段,定义每段的价值为该排列所有点及两两点之间lca中最浅节点的深度。要求输出K段区间所有可能的价值和中的最小值。n*K<=3e5。

解法:参考http://blog.csdn.net/u013944294/article/details/76601946

这里主要考虑LCA有几个强力的性质:

1,定义“一段排列所有点及两两点之间lca中最浅节点的深度”为T,当在排列末尾加上一个节点ai的时候,只需要求一下ai-1与ai的lca,再与之前的lca比较谁的深度小,维护深度的最小值即可。

2,处理出相邻点间lca深度之后,比如 7 4 5 6 3 9 10,若最优切分方式里 4 与 3 在不同区间里,4 与 3 之间的任何数,即 5 6,划分给 3 区间或者 4 区间,都不会影响最终答案

3,区间末尾增加新的节点时,价值T一定是不增的。


所以当前的DP值就之和相邻的前2两个DP值有关,因为划分出来的每个区间的答案,其实就是连续两个的lca的最小值。

所以:DP转移有两种:

1) 将该点放到前一个区间里,dp[i][j]=dp[i-1][j];

2) 将该点放到下一个区间里,dp[i][j]=dp[i-1][j-1]+depth[j] 或者 dp[i][j]=dp[i-2][j-1]+depth[lca(i-1,i)]。

复杂度:O(n*k)


109ms代码:


#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
struct FastIO
{
    static const int S = 1310720;
    int wpos;
    char wbuf[S];
    FastIO() : wpos(0) {}
    inline int xchar()
    {
        static char buf[S];
        static int len = 0, pos = 0;
        if (pos == len)
            pos = 0, len = fread(buf, 1, S, stdin);
        if (pos == len) exit(0);
        return buf[pos ++];
    }
    inline int xuint()
    {
        int c = xchar(), x = 0;
        while (c <= 32) c = xchar();
        for (; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0';
        return x;
    }
    inline int xint()
    {
        int s = 1, c = xchar(), x = 0;
        while (c <= 32) c = xchar();
        if (c == '-') s = -1, c = xchar();
        for (; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0';
        return x * s;
    }
    inline void xstring(char *s)
    {
        int c = xchar();
        while (c <= 32) c = xchar();
        for (; c > 32; c = xchar()) * s++ = c;
        *s = 0;
    }
    inline void wchar(int x)
    {
        if (wpos == S) fwrite(wbuf, 1, S, stdout), wpos = 0;
        wbuf[wpos ++] = x;
    }
    inline void wint(LL x)
    {
        if (x < 0) wchar('-'), x = -x;
        char s[24];
        int n = 0;
        while (x || !n) s[n ++] = '0' + x % 10, x /= 10;
        while (n--) wchar(s[n]);
    }
    inline void wstring(const char *s)
    {
        while (*s) wchar(*s++);
    }
    ~FastIO()
    {
        if (wpos) fwrite(wbuf, 1, wpos, stdout), wpos = 0;
    }
} io;
const int maxn = 3e5+5;
const int inf = 0x3f3f3f3f;
int n,k,head[maxn],p[maxn],edgecnt;
int fa[maxn][20],dep[maxn],d[maxn];
struct edge{
    int to,next;
}E[maxn*2];
void init(){
    memset(head,-1,sizeof(head));
    edgecnt=0;
}
void add(int u, int v){
    E[edgecnt].to = v, E[edgecnt].next = head[u], head[u] = edgecnt++;
}
void dfs(int x, int d, int pre){
    dep[x] = d;
    fa[x][0] = pre;
    for(int i=1; i<20; i++){
        fa[x][i] = fa[fa[x][i-1]][i-1];
    }
    for(int i=head[x]; ~i; i=E[i].next){
        int v = E[i].to;
        if(v == pre) continue;
        dfs(v, d+1, x);
    }
}
int LCA(int u, int v){
    if(dep[u]<dep[v]) swap(u,v);
    for(int i=19; i>=0; i--){
        if(dep[fa[u][i]]>=dep[v]){
            u=fa[u][i];
        }
    }
    if(u==v) return u;
    for(int i=19; i>=0; i--){
        if(fa[u][i]!=fa[v][i]){
            u=fa[u][i];
            v=fa[v][i];
        }
    }
    return fa[u][0];
}
int main()
{
    while(1)
    {
        n = io.xint();
        k = io.xint();
        for(int i=1; i<=n; i++) p[i] = io.xint();
        init();
        for(int i=1; i<n; i++){
            int u, v;
            u = io.xint();
            v = io.xint();
            add(u,v);
            add(v,u);
        }
        dfs(1,1,0);
        for(int i=2; i<=n; i++){
            int _lca=LCA(p[i],p[i-1]);
            d[i]=dep[_lca];
        }
        vector<vector<int> >dp(n+1,vector<int>(k+1,0));
        for(int i=1; i<=n; i++){
            for(int j=1; j<=min(i,k); j++){
                int ret=inf;
                if(i>=2&&j-1<=i-2) ret=min(ret,dp[i-2][j-1]+d[i]);
                if(j<i) ret = min(ret, dp[i-1][j]);
                ret = min(ret, dp[i-1][j-1]+dep[p[i]]);
                dp[i][j] = ret;
            }
        }
        printf("%d\n", dp[n][k]);
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值