商标数据集(包含文字、图形、图文结合商标)

博客内容涉及整理包含图形、文字及图文结合的商标数据集,总计13220张,主要涵盖某一品牌的不同商标类型。数据集可用于训练人工智能识别模型。提供百度网盘链接供下载,提取码为'jaht'。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内含图形商标2000张(某一品牌可能有多个商标),文字商标2000张,图文结合商标9200张。

本人吐槽:整理数据集这种体力活真不是人干的啊~~~~~~

百度网盘链接如下:

链接:https://pan.baidu.com/s/1rmusCPMtLZ4WLRhTOrDpIA 
提取码:jaht

### 社交媒体图文分析数据集 对于社交媒体中的图文分析任务,存在多种可用的数据集。这些数据集通常包含了文本和图像的配对信息,并标注了情感极性或其他元信息,以便于研究者进行多模态的情感分析和其他相关任务。 #### 数据集介绍 1. **MASA Dataset**: MASA 是一个多模态方面级情感分析的大规模数据集[^1]。该数据集由文本-图片对组成,具有 57 个不同的方面标签以及超过 38,000 条记录。这种形式不仅涵盖了丰富的类别信息,而且在数量上也远超现有公开数据集。它特别适合用于研究如何结合文本和图像来进行更深层次的情感分析。 2. **TwitEng Dataset**: TwitEng 是一个专注于 Twitter 平台上的社交数据分析的数据集[^3]。虽然它的重点可能更多在于自然语言处理 (NLP),但它同样可以被扩展应用于图文联合建模的任务中。具体来说,可以通过爬取对应的推文及其关联图片来增强原始 NLP 数据的内容维度。 3. **VIST Dataset (Visual Storytelling)**: VIST 提供了一个独特的视角——即通过一系列连贯的照片讲述故事的方式[^4]。尽管其最初目的是促进视觉叙事的研究,但由于每张照片都有相应的描述文字,因此也可以作为图文匹配或者跨模态理解的良好素材之一。 4. **MMHS15K & MMHS69K Datasets**: 这两个数据集分别包含约 15k 和近 70k 的样本量,均来源于 Instagram 等平台上的帖子内容。它们主要用于探索神经网络方法在关系抽取方面的表现能力,尤其是当引入额外的视觉证据时的效果变化情况。其中涉及到了三种不同类型的视觉特征提取方式(Image Labels、Visual Objects 及 Visual Attention),这为后续实验提供了灵活的选择余地。 #### 技术实现建议 以下是利用上述提到的一种典型数据集进行初步加载与预览的一个 Python 示例代码片段: ```python import pandas as pd # 假设我们正在使用 MASA Dataset df = pd.read_csv('path_to_masa_dataset.csv') print(df.head()) ``` 以上脚本展示了如何读入 CSV 文件格式存储的社会化多媒体资料表单结构;当然实际操作过程中还需要依据具体情况调整路径参数以及其他细节设置。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值