给char赋超过范围的值会发生什么

给char赋超过范围的值

想要了解这个问题,首先要清楚二进制储存的原码反码补码到底是什么(可跳过直接看三)

一. 机器数和真值

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.

1、机器数
一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1。 比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。
那么,这里的 00000011 和 10000011 就是机器数。

2、真值
因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。
例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

二. 原码, 反码, 补码的概念

1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:[1111 1111 , 0111 1111],即[-127 , 127]

2. 反码

反码的表示方法是:
正数的反码是其本身,负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

3. 补码

补码的表示方法是:
正数的补码就是其本身,负数的补码是在反码的基础上+1
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

三. 为何要使用原码, 反码和补码

既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?
首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减… 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:
当数为正数的时候结果当然是正确的,但是存在负数时:
如:计算十进制的表达式 1-1=0
1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2
如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:
1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原
这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.

三.给char赋超过范围的值会发生什么

理解二进制的储存后可以知道,无论什么在计算机中都是以二进制的形式储存,char字符也不例外。

1.下面是关于赋值超范围时计算机的读取方式:

当我们赋给带符号类型一个超出它表示范围的值时,结果是未定义的(undefined),因为在内存中,带符号类型首位是符号位,表示正负。假设此类型占8比特。当读取超出范围的值时,将只取该数的最后8位进行读取,此时首位数字其实并不能代表正负,这样的读取没有意义,结果自然是未定义的。(有资料说有符号的数据类型这里可能发生程序可能继续工作、可能崩溃,也可能生成垃圾数据等情况,但笔者目前没有遇到。在这暂作标记)
其实这个从最后取有效位数的方法,就是对初始值对无符号类型表示数值总数取模后的余数

这个对其他数据类型也适用
如定义unsigned int a = 10000000000,unsigned int一共可表示4294967296个数,所以编译输出的结果为10000000000%4294967296 = 10000000000 - (10000000000/4294967296) * 4294967296 = 1410065408。
在这里插入图片描述

2.给char赋超过范围的值会发生什么

char 其实就相当于带符号的一个字节长度的int型,r可以表示-128 - 127之间的数,基本可以这样认为。

如果给char 赋值128或者超过128 出现的情况如下:

如赋值128给char,因128是 int 型,占 4 字节,二进制代码为 0000 0000 0000 0000 0000 0000 1000 0000.。若将它赋给一个只有8位的char 类型变量,只能将低8位的1000 0000 放进去,其他的都会被删掉。整数在计算机中都是以补码的形式存储的,此时1000 0000 在计算机的眼里,是一个补码,最左边是 1 表示负数,补码1000 0000 所对应的十进制是 -128,所以最后输出的就是 -128。 类似int long等数据类型都是如此, 此时如果有: char ch = 128; printf("%d\n",ch);输出为-128.
在这里插入图片描述

如果给char赋值129, 则二进制表示为 1000 0001,而-127的补码就是1000 0001,所以 char ch = 129; printf("%d\n",ch);输出为-127. 原码求补码是除符号位外每位取反再末位 加1, 补码求原码也可以一样用这种方法,符号位外每位取反再末位加1。

如果把522赋值给ch;522对应的二进制是0000 0010 0000 1010, 也是把低八位赋值给ch ;即:0000 1010,输出对应的是10。

int 和 long数据类型也有相同的道理。

另外,比如char a=‘1234’; 系统会从’1234’中截取一个字节的内容给a,截取低位 ‘4’ 给a。
int a = ‘abc’; int 的低三个字节会是 a b c,最高字节为0。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值