转置矩阵(Transpose of a matrix)

本文介绍了矩阵转置的概念,包括如何从原矩阵中交换行与列构造转置矩阵,强调了转置矩阵的行列式保持不变。此外,文章详细列举了转置的性质,如转置的逆运算、线性映射、标量转置等,并给出了特殊矩阵类型的定义,如对称矩阵、正交矩阵和斜对称矩阵。同时,复数矩阵的共轭转置也被提及。
摘要由CSDN通过智能技术生成

定义

给定一个矩阵 A,将矩阵的行列互换得到的新矩阵称为转置矩阵,记为 A^T, A^{tr}, A^',。转置矩阵的行列式不变,即 \left \| A \right \|=det|A|=det|A^T|。转置矩阵由下列动作建立:

  • 将 A 的横行写为 A^T 的纵列;
  • 将 A 的纵列写成 A^T 的横行。

形式来说,m*n 矩阵 A 的转置矩阵是 n*m 矩阵,即A^{T}_{ij}=A_{ji} \quad for 1\leq i\leq n, 1\leq j\leq m.

例子

  • \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}^{T}=\begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix}
  • \begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix}^T=\begin{bmatrix} 1 & 3 & 5\\ 2 & 4 & 6 \end{bmatrix}

性质

(A^T)^T\equiv A。转置是自身的逆运算。

(A+B)^T=A^T+B^T。转置是从 m*n 矩阵的向量空间到所有 n*m 矩阵的向量空间的线性映射。

(AB)^T=B^TA^T

(cA)^T=cA^T。标量的转置是同样的标量。

det(A^T)=det(A)。矩阵的转置矩阵的行列式等于矩阵的行列式。

特殊转置矩阵

其转置等于自身的方阵称为对称矩阵。也就是说 A 是对称的,如果 A^T=A

其转置也是它的逆矩阵的方块矩阵称为正交矩阵。也就是说 G 是正交的,如果 GG^T=G^TG=I_{n}

其转置等于它的负矩阵的方块矩阵称为斜对称矩阵。也就是说 A 是斜对称的,如果 A^T=-A

复数矩阵 A 的共轭转置,写为 A^H,是 A 的转置后再取每个元素的共轭复数。也就是说 A^H=(\overline{A})^T=\overline{(A)^T}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值