定义
给定一个矩阵 A,将矩阵的行列互换得到的新矩阵称为转置矩阵,记为 ,。转置矩阵的行列式不变,即 。转置矩阵由下列动作建立:
- 将 A 的横行写为 的纵列;
- 将 A 的纵列写成 的横行。
形式来说,m*n 矩阵 A 的转置矩阵是 n*m 矩阵,即
例子
性质
。转置是自身的逆运算。
。转置是从 m*n 矩阵的向量空间到所有 n*m 矩阵的向量空间的线性映射。
。
。标量的转置是同样的标量。
。矩阵的转置矩阵的行列式等于矩阵的行列式。
特殊转置矩阵
其转置等于自身的方阵称为对称矩阵。也就是说 A 是对称的,如果 。
其转置也是它的逆矩阵的方块矩阵称为正交矩阵。也就是说 G 是正交的,如果 。
其转置等于它的负矩阵的方块矩阵称为斜对称矩阵。也就是说 A 是斜对称的,如果 。
复数矩阵 A 的共轭转置,写为 ,是 A 的转置后再取每个元素的共轭复数。也就是说 。