矩阵特征值和特征向量(Eigenvalue and Eigenvector)

定义

矩阵 A 为 n 阶方阵,它的特征向量(eigenvector)v 经过这个线性变化之后,得到的新向量仍然与原来的 v 保持再同一条直线上,但其长度或方向也许会改变。即 A\nu =\lambda \nu,其中 \lambda 为标量,即特征向量的长度在该线性变化下缩放比例,称 \lambda 为其特征值(eigenvalue)。

根据定义,我们需要满足 Ax =\lambda xAx=\lambda xI=\lambda Ix。使用左手法则,我们可以得到 Ax-\lambda Ix=0,对应 (A-\lambda I)x=0(A-\lambda I)x=0,这是关于标量 x 的 n 阶齐次线性方程组,它有非零解的充分必要条件是系数行列式为零,也就是 det(A-\lambda I)=0

含义

如果特征值为正,则表示 v 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为 0,则是表示缩回零点。但无论怎么样,仍在同一条直线上。

举例

假设 A=\begin{bmatrix} -6 & 3\\ 4 & 5 \end{bmatrix}。求对应的特征向量和特征值。

根据 \left \| A-\lambda I \right \|=0,我们可以写出 |\begin{bmatrix} -6 & 3\\ 4 & 5 \end{bmatrix}-\lambda \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}|=0,也就是 \left \| \begin{bmatrix} -6-\lambda & 3\\ 4 & 5-\lambda \end{bmatrix} \right \|=0,通过计算对应的行列式为 (-6-\lambda )(5-\lambda )-3*4=0,也就是 \lambda ^2+\lambda -42=(\lambda -6)(\lambda +7)=0

这样,我们得到了两个可能的特征值,即\left\{\begin{matrix} \lambda_1=-7\\ \lambda_2=6 \end{matrix}\right.

下面我们将对应的特征值代入 Ax=\lambda x 中。

\lambda=6,对应的方程变为 \begin{bmatrix} -6 & 3\\ 4& 5 \end{bmatrix}\begin{bmatrix} x_1\\ x_2 \end{bmatrix}=6\begin{bmatrix} x_1\\ x_2 \end{bmatrix},展开我们可以得到方程 \left\{\begin{matrix} -6x_1+3x_2=6x_1\\ 4x_1+5x_2=6x_2 \end{matrix}\right.,使用左手法则得到 \left\{\begin{matrix} -12x_1+3x_2=0\\ 4x_1-x_2=0 \end{matrix}\right.,每个方程都给出了 x_2=4x_1,这样我们可以得到一个非零的特征向量,即 \begin{bmatrix} 1\\ 4 \end{bmatrix}。下面我们来验证这个特征向量的正确性,同样代入到方程可得 \begin{bmatrix} -6 & 3\\ 4& 5 \end{bmatrix}\begin{bmatrix} 1\\ 4 \end{bmatrix}=\begin{bmatrix} -6*1+3*4\\ 4*1+5*4 \end{bmatrix}=\begin{bmatrix} 6\\ 24 \end{bmatrix}=6\begin{bmatrix} 1\\ 4 \end{bmatrix},验证完毕。

\lambda =-7,对应的方程变为 \begin{bmatrix} -6 & 3\\ 4& 5 \end{bmatrix}\begin{bmatrix} x_1\\ x_2 \end{bmatrix}=-7\begin{bmatrix} x_1\\ x_2 \end{bmatrix},展开我们可以得到方程 \left\{\begin{matrix} -6x_1+3x_2=-7x_1\\ 4x_1+5x_2=-7x_2 \end{matrix}\right.,使用左手法则得到 \left\{\begin{matrix} x_1+3x_2=0\\ 4x_1+12x_2=0 \end{matrix}\right.,每个方程都给出了 x_1=-3x_2,这样我们可以得到一个非零的特征向量,即 \begin{bmatrix} -3\\ 1 \end{bmatrix}。下面我们来验证这个特征向量的正确性,同样代入到方程可得 \begin{bmatrix} -6 & 3\\ 4& 5 \end{bmatrix}\begin{bmatrix} -3\\ 1 \end{bmatrix}=\begin{bmatrix} (-6)*(-3)+3*1\\ 4*(-3)+5*1 \end{bmatrix}=\begin{bmatrix} 21\\ -7 \end{bmatrix}=-7\begin{bmatrix} -3\\ 1 \end{bmatrix},验证完毕。

  • 3
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一个使用幂法求矩阵特征值特征向量的C++代码示例: ```c++ #include <iostream> #include <cmath> #include <vector> using namespace std; // 定义矩阵类型 typedef vector<vector<double>> matrix; // 用于计算矩阵向量乘积 vector<double> matrixVectorProduct(matrix A, vector<double> x) { int n = A.size(); vector<double> y(n, 0); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { y[i] += A[i][j] * x[j]; } } return y; } // 用于计算向量的模长 double getNorm(vector<double> x) { double norm = 0; for (int i = 0; i < x.size(); i++) { norm += x[i] * x[i]; } return sqrt(norm); } // 用于计算矩阵特征值特征向量 void powerMethod(matrix A, double& eigenvalue, vector<double>& eigenvector, int maxIter = 1000, double tol = 1e-6) { int n = A.size(); vector<double> x(n, 1); double lambda = 0, lambda_old = 0; vector<double> v(n, 0); int iter = 0; while (iter < maxIter) { v = matrixVectorProduct(A, x); lambda = v[0] / x[0]; for (int i = 1; i < n; i++) { if (abs(v[i] / x[i] - lambda) > tol) { lambda = 0; break; } } if (lambda != 0) { eigenvector = x; eigenvalue = lambda; break; } x = v; double norm = getNorm(x); for (int i = 0; i < n; i++) { x[i] /= norm; } lambda_old = lambda; iter++; } } // 测试 int main() { matrix A = {{2, -1, 0}, {-1, 2, -1}, {0, -1, 2}}; double eigenvalue; vector<double> eigenvector; powerMethod(A, eigenvalue, eigenvector); cout << "Eigenvalue: " << eigenvalue << endl; cout << "Eigenvector: "; for (int i = 0; i < eigenvector.size(); i++) { cout << eigenvector[i] << " "; } cout << endl; return 0; } ``` 在上述代码中,`matrix` 类型是一个二维向量,用于存储矩阵。`matrixVectorProduct` 函数用于计算矩阵向量的乘积。`getNorm` 函数用于计算向量的模长。`powerMethod` 函数是幂法的具体实现,其中 `maxIter` 和 `tol` 分别表示最大迭代次数和迭代收敛精度。程序最后对一个测试矩阵进行了求解并输出了结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值