定义
The divergence of a vector field
a
(
x
,
y
,
z
)
a(x, y, z)
a(x,y,z) is defined by
d
i
v
a
=
∇
⋅
a
=
∂
a
x
∂
x
+
∂
a
y
∂
y
+
∂
a
z
∂
z
,
div \boldsymbol{a}=\nabla \cdot \boldsymbol{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z},
diva=∇⋅a=∂x∂ax+∂y∂ay+∂z∂az,
where
a
x
a_x
ax,
a
y
a_y
ay and
a
z
a_z
az are the
x
x
x-,
y
y
y- and
z
z
z- components of
a
\boldsymbol{a}
a. Clearly,
∇
⋅
a
\nabla \cdot \boldsymbol{a}
∇⋅a is a scalar field. Any vector field
a
\boldsymbol{a}
a for which
∇
⋅
a
=
0
\nabla \cdot \boldsymbol{a}=0
∇⋅a=0 is said to be solenoidal.
Examples
Example 1
Find the divergence of the vector field a = x 2 y 2 i + y 2 z 2 j + x 2 z 2 k \boldsymbol{a}=x^2y^2\boldsymbol{i}+y^2z^2\boldsymbol{j}+x^2z^2\boldsymbol{k} a=x2y2i+y2z2j+x2z2k.
Solution
From the definition, the divergence of a vector field
a
(
x
,
y
,
z
)
a(x, y, z)
a(x,y,z) is given by
∇
⋅
a
=
2
x
y
2
+
2
y
z
2
+
z
x
2
z
=
2
(
x
y
2
+
y
z
2
+
x
2
z
)
.
\nabla \cdot \boldsymbol{a}=2xy^2+2yz^2+zx^2z=2(xy^2+yz^2+x^2z).
∇⋅a=2xy2+2yz2+zx2z=2(xy2+yz2+x2z).
Geometrical properties
The divergence can be considered as a quantitative measure of how much a vector field diverges
(spreads out) or converges at any given point.
For example, if we consider the vector field
v
(
x
,
y
,
z
)
v(x, y, z)
v(x,y,z) describing the local velocity at any point in a fluid then
∇
⋅
v
\nabla \cdot \boldsymbol{v}
∇⋅v is equal to the net rate of outflow of fluid per unit volume, evaluated at a point (by letting a small volume at that point tend to zero).