Calc3: Vector Fields

Vector Fields

Definition

A vector field on R 3 R^3 R3 with domain as D is a function F ⃗ \vec F F that assign to each point within D a vector F ⃗ ( x , y , z ) \vec F(x,y,z) F (x,y,z). We often write it as < P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) > <P(x,y,z),Q(x,y,z),R(x,y,z)> <P(x,y,z),Q(x,y,z),R(x,y,z)> where P, Q, and R are scaler-valued functions.

Use Gravitation as an example.
∣ F ⃗ ∣ = G m M r 2 F ⃗ ( x , y , z ) = G m M ( x 2 + y 2 + z 2 ) 3 2 ( x , y , z ) |\vec F| = \frac{GmM}{r^2} \\\\ \vec F(x,y,z) = \frac{GmM}{(x^2+y^2+z^2)^\frac{3}{2}}(x,y,z) F =r2GmMF (x,y,z)=(x2+y2+z2)23GmM(x,y,z)

Conservative Fields

A special kind of vector fields is called gradient fields. If f is a scalar function of three variables, its gradient ∇ f = ( f x , f y , f z ) \nabla f = (f_x, f_y,f_z) f=(fx,fy,fz). ∇ f \nabla f f is called a gradient vector field.

F ⃗ \vec F F is called a conservative vector field if it is the gradient of some scaler function. That is, there exists f s.t. F ⃗ = ∇ f \vec F = \nabla f F =f.

Line Integrals

Definition

Also called path integrals. Line integrals are generalizations of single integral.

A planar curve C with parametrization of x = x ( t ) , y = y ( t ) x=x(t),y=y(t) x=x(t),y=y(t) and the height function f ( x , y ) f(x,y) f(x,y). Cut C into small pieces, and pretend each small piece is a line segment. We used Δ s i = ∣ x ′ ( t i ) ∣ 2 + ∣ y ′ ( t i ) ∣ 2 ( t i + 1 − t i ) \Delta s_i = \sqrt{|x'(t_i)|^2 + |y'(t_i)|^2}(t_{i+1} - t_i) Δsi=x(ti)2+y(ti)2 (ti+1ti) to denote the length of the curve from t i t_i ti to t i + 1 t_{i+1} ti+1. Sum them up, we can get
∫ C f ( x , y ) d S = l i m ∑ i f ( x ( t i ) , y ( t i ) ) ∣ x ′ ( t i ) ∣ 2 + ∣ y ′ ( t i ) ∣ 2 Δ t i = ∑ i F ( t i ) Δ t i = ∫ a b F ( t ) d t = ∫ a b f ( x ( t ) , y ( t ) ) ∣ x ′ ( t ) ∣ 2 + ∣ y ′ ( t ) ∣ 2 d t \int_C f(x,y) dS = lim \sum_i f(x(t_i),y(t_i)) \sqrt{|x'(t_i)|^2 + |y'(t_i)|^2}\Delta t_i \\\\ = \sum_i F(t_i) \Delta t_i \\\\ = \int_a^b F(t) dt \\\\ = \int_a^b f(x(t),y(t))\sqrt{|x'(t)|^2 + |y'(t)|^2} dt Cf(x,y)dS=limif(x(ti),y(ti))x(ti)2+y(ti)2 Δti=iF(ti)Δti=abF(t)dt=abf(x(t),y(t))x(t)2+y(t)2 dt
E.x.

Evaluate ∫ C ( 2 + x 2 y ) d S \int_C (2+x^2y) dS C(2+x2y)dS where C is the unit circle above x-axis.

sol:

First, parametrize C as ( c o s θ , s i n θ ) (cos \theta, sin \theta) (cosθ,sinθ), 0 ≤ θ ≤ π 0 \le \theta \le \pi 0θπ. Other valid parametrization also works.
∫ C ( 2 + x 2 y ) d S = ∫ 0 π ( 2 + c o s 2 θ s i n θ ∣ x ′ ( θ ) ∣ 2 + ∣ y ′ ( θ ) ∣ 2 ) d θ = ∫ 0 π ( 2 + c o s 2 θ s i n θ ) d θ \int_C (2+x^2y) dS = \int_0^\pi (2+cos^2\theta sin \theta \sqrt{|x'(\theta)|^2 + |y'(\theta)|^2}) d\theta \\\\ = \int_0^\pi (2+cos^2\theta sin \theta) d\theta \\\\ C(2+x2y)dS=0π(2+cos2θsinθx(θ)2+y(θ)2 )dθ=0π(2+cos2θsinθ)dθ
E.x.

Evaluate ∫ C 2 x d S \int_C 2x dS C2xdS where C contains C1 and C2. C1 is y = x 2 y=x^2 y=x2. C2 is y = x 3 y=x^3 y=x3.

sol:

Integrate two parts separately and add them up.

E.x.

Compute mass. We have density function ρ ( x , y ) = 1 − y \rho(x,y)=1-y ρ(x,y)=1y. Evaluate ∫ C ρ d S \int_C \rho dS CρdS where C is the unit circle above x-axis.

sol:

First, parametrize C as ( c o s θ , s i n θ ) (cos \theta, sin \theta) (cosθ,sinθ), 0 ≤ θ ≤ π 0 \le \theta \le \pi 0θπ.
∫ C ρ d S \int_C \rho dS CρdS

Orientation

Line integrals with respect to x and y.
∫ C f ( x , y ) d x = ∫ a b f ( x ( t ) , y ( t ) ) x ′ ( t ) d t ∫ C f ( x , y ) d y = ∫ a b f ( x ( t ) , y ( t ) ) y ′ ( t ) d t \int_C f(x,y) dx = \int_a^b f(x(t),y(t)) x'(t) dt\\\\ \int_C f(x,y) dy = \int_a^b f(x(t),y(t)) y'(t) dt Cf(x,y)dx=abf(x(t),y(t))x(t)dtCf(x,y)dy=abf(x(t),y(t))y(t)dt
For C = ( x ( t ) , y ( t ) ) C=(x(t), y(t)) C=(x(t),y(t)), a ≤ t ≤ b a \le t \le b atb and C ′ = ( x ( − t ) , y ( − t ) ) C' = (x(-t), y(-t)) C=(x(t),y(t)), − b ≤ t ≤ − a -b \le t \le -a bta. It is easy to find that
∫ C f ( x , y ) d y = ∫ a b f ( x ( t ) , y ( t ) ) y ′ ( t ) d t ∫ C ′ f ( x , y ) d y = ∫ − b − a f ( x ( − t ) , y ( − t ) ) y ′ ( − t ) d t = − ∫ a b f ( x ( t ) , y ( t ) ) y ′ ( t ) d t \int_C f(x,y) dy = \int_a^b f(x(t),y(t)) y'(t) dt \\\\ \int_{C'} f(x,y) dy = \int_{-b}^{-a} f(x(-t),y(-t)) y'(-t) dt \\\\ = -\int_a^b f(x(t),y(t)) y'(t) dt \\\\ Cf(x,y)dy=abf(x(t),y(t))y(t)dtCf(x,y)dy=baf(x(t),y(t))y(t)dt=abf(x(t),y(t))y(t)dt
This is due to different orientation.

Line Integral of Vector Fields

Assume a gradient field.
∫ C F ⃗ d r ⃗ = ∫ a b F ⃗ ( r ⃗ ( t ) ) r ⃗ ′ ( t ) d t = ∫ a b F ⃗ ( x ( t ) , y ( t ) ) ⋅ ( x ′ ( t ) , y ′ ( t ) ) d t \int_C \vec F d\vec r = \int_a^b \vec F(\vec r(t)) \vec r'(t) dt \\\\ = \int_a^b \vec F(x(t), y(t)) \cdot (x'(t), y'(t)) dt \\\\ CF dr =abF (r (t))r (t)dt=abF (x(t),y(t))(x(t),y(t))dt
E.x.

Find the work done by the force field F ⃗ ( x , y ) = ( x 2 , − x y ) \vec F(x,y)=(x^2, -xy) F (x,y)=(x2,xy) where C is the unit circle in the first quadrant travelling from the x-axis.

sol:
r ⃗ ( t ) = ( c o s t , s i n t ) , 0 ≤ t ≤ π / 2 ∫ a b F ⃗ ( r ⃗ ( t ) ) r ⃗ ′ ( t ) d t = ∫ 0 π / 2 ( c o s 2 t , − s i n t   c o s t ) ⋅ ( − s i n t , c o s t ) d t = ∫ 0 π / 2 − 2 c o s 2 ( t ) s i n ( t )   d t \vec r(t) = (cost,sin t), 0 \le t \le \pi/2 \\\\ \int_a^b \vec F(\vec r(t)) \vec r'(t) dt \\\\ = \int_0^{\pi/2} (cos^2 t, -sint \ cost) \cdot (-sint, cost) dt \\\\ = \int_0^{\pi/2} -2 cos^2(t)sin(t) \ dt \\\\ r (t)=(cost,sint),0tπ/2abF (r (t))r (t)dt=0π/2(cos2t,sint cost)(sint,cost)dt=0π/22cos2(t)sin(t) dt

Connections of Different Line Integrals

F ⃗ ( x , y ) = ( P ( x , y ) , Q ( x , y ) ) r ⃗ ( t ) = ( x ( t ) , y ( t ) ) , a ≤ t ≤ b ∫ C F ⃗ d r ⃗ = ∫ a b F ⃗ ( r ⃗ ( t ) ) r ⃗ ′ ( t ) d t = ∫ a b [ P ( x ( t ) , y ( t ) ) ⋅ x ′ ( t ) + Q ( x ( t ) , y ( t ) ) ⋅ y ′ ( t ) ] d t = ∫ C P d x + ∫ C Q d y \vec F(x, y) = (P(x,y), Q(x,y)) \\\\ \vec r(t) = (x(t), y(t)), a \le t \le b \\\\ \int_C \vec F d\vec r = \int_a^b \vec F(\vec r(t)) \vec r'(t) dt \\\\ = \int_a^b [P(x(t),y(t)) \cdot x'(t) + Q(x(t),y(t)) \cdot y'(t)] dt \\\\ = \int_C P dx + \int_C Q dy F (x,y)=(P(x,y),Q(x,y))r (t)=(x(t),y(t)),atbCF dr =abF (r (t))r (t)dt=ab[P(x(t),y(t))x(t)+Q(x(t),y(t))y(t)]dt=CPdx+CQdy

The Fundamental Theorem for Line Integrals

The Fundamental Theorem

Suppose f is a function of two variable, then we have following theorem.

C is continuously differentiable, r ⃗ ( t ) ≠ 0 \vec r(t) \ne 0 r (t)=0;

f is continuously differentiable, and ∫ C ∇ f d r ⃗ = f ( r ⃗ ( b ) ) − f ( r ⃗ ( a ) ) \int_C \nabla f d\vec r = f(\vec r(b)) - f(\vec r(a)) Cfdr =f(r (b))f(r (a));

Proof
∫ C ∇ f d r ⃗ = ∫ a b ∇ f ( r ⃗ ( t ) ) ⋅ r ⃗ ′ ( t ) d t = ∫ a b f x ( x ( t ) , y ( t ) ) ⋅ x ′ ( t ) + f y ( x ( t ) , y ( t ) ) ⋅ y ′ ( t ) d t = f ( r ⃗ ( b ) ) − f ( r ⃗ ( a ) ) \int_C \nabla f d\vec r = \int_a^b \nabla f(\vec r(t)) \cdot \vec r'(t)dt \\\\ = \int_a^b f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)dt \\\\ = f(\vec r(b)) - f(\vec r(a)) Cfdr =ab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值