公有云相关概念——region和AZ、VPC、安全组、公有云网络架构

https://www.cnblogs.com/yunjisuanchengzhanglu/p/16164376.html

一、region和az

  • region(区域):一个region可以理解为一个大的独立的数据中心,一般按地理位置来划分。不同区域之间内网互不想通。
  • AZ(available zone)可用分区:可以理解为一个region下有多个机房每个机房就是一个AZ。一个region可以有多个az,一个az只能属于一个region。每个AZ之间也是相互独立的,比如说有独立的网络,有独立的供电系统等。
  • 另外,每个region中的az是互通的,虽然每个az有自己独立的网络(是指在高可用层面),但是在网络层面他们之间是可以互相通信的。

二、VPC

VPC(virtual private cloud):虚拟私有云。它不是弹性云服务器(虚拟机),它是一个网络。

比如说一个公司自己有一个数据中心,数据中心里有很多机柜,每台机柜里都有一台一台服务器,服务器server的IP地址一般都是内网IP地址,比如说192.168.1.100等,如果要连外网,那么路由器上会绑定一个公网IP,再由公网IP连接到外网去。如下图所示

如果有一天要把公司的业务迁移上云,想保证服务器的内网IP地址不变,这样可以吗?答案是可以的,这就要通过VPC来实现了。这里的虚拟私有云中的私有就是指自己私有的内网IP地址。每个region的VPC默认是不通的

那么和这个公司内网一样的VPC到底是什么东西呢?

在公有云中,每创建一个VPC,就会自动生成一个路由器,然后每个VPC下边又可以创建很多子网。路由器上会绑定一个外网IP,如果需要访问外网通过路由器就可以访问。如下图所示:

 那么这里有一个问题,66网段的子网和88网段的子网之间能通吗?他们之间是可以互通的,虽然在不同网段,但是因为有路由器在,所以可以通信。所以在VPC中,不管有多少个子网,每个子网中的虚拟机之间都是可以互通的。

如果这时候在这个region下再创建一个新的VPC,这两个VPC之间可以互通吗?答案是不通的,因为每个VPC对应一个路由,这两个路由器之间没有打通,所以这两个VPC是不通的。如下图所示。那么如果想打通这两个VPC应该怎么办呢?我们可以通过对等连接将他们打通。

 在公有云界面上直接创建对等连接,如下图所示。他会提示:对等连接创建成功后,请务必添加路由信息,才能使两个VPC互通。

所以我们在创建对等连接后,需要写入VPC的路由信息,就可以将不同的路由器之间打通,从而实现同一个region下的不同VPC之间的互通。

三、安全组

我们在公有云上配置安全组时,会有一个入方向规则,和一个出方向规则,如下图所示:

 入方向规则就是指允许谁访问,比如这里默认的允许22端口,就相当于默认允许ssh连接。出方向规则就是指可以对外访问哪些资源。

四、总结

综上所述,如果两个云主机之间ping不通,我们一般需要这样排查:

1、看他们是否在同一个region

2、是否在同一个VPC

3、安全组是否放行

下边是公有云云内网络层面通用架构:

  • 网络ACL:网络访问控制列表(internet access control list)
  • NAT:当有很多云主机需要访问外网时,可以通过NAT实现。

本地VPC连到IDC机房的两种方法,

  1. 通过VPN
  2. 通过云专线(一头插在服务器上,另一头插在交换机上,实现云内到云外)。

EIP:弹性IP。EIP可以选择使用公网IP,也可以选择使用内网IP。

 

### Region 的定义与用法 在信息技术领域,尤其是计算机视觉图像处理中,“region”通常指代图像中的特定区域或部分。这些区域可以由像素集合组成,并通过边界框或其他几何形状来描述其范围。 #### 1. **Region Proposal Generation** 在目标检测任务中,生成候选区域(Region Proposals)是一个重要的预处理步骤。此过程旨在识别可能包含感兴趣对象的图像子区域[^1]。例如,在 Faster R-CNN 架构中,区域建议网络(RPN, Region Proposal Network)负责生成高质量的目标候选框。这些候选框随后被传递给后续阶段用于进一步分类定位优化。 #### 2. **Fast R-CNN 中的应用** 一旦获得了初始的 region 提议列表,则可以通过像 Fast R-CNN 这样的框架对其进行精炼分析。具体来说,每个提议会被送入卷积神经网络(CNN),从而提取特征向量并预测类别标签以及调整后的边框坐标位置。 #### 3. **Few-Shot Learning 下的新发展** 对于低资源场景下的目标发现——比如少样本学习(few-shot learning)环境里—研究者们探索出了更加高效的机制去捕捉跨图片间相似性模式。例如,《Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection》一文中提到的方法论就强调了如何借助密集关联蒸馏技术提升模型泛化能力的同时保持计算效率[^2]。 ```python import numpy as np def generate_regions(image_array): """ A simple function demonstrating how regions might be generated from an image array. Args: image_array (np.ndarray): Input image represented as a NumPy array. Returns: list[tuple]: List of tuples representing bounding box coordinates (x_min, y_min, x_max, y_max). """ height, width = image_array.shape[:2] # Example logic: Divide the image into four equal quadrants. half_height = int(height / 2) half_width = int(width / 2) regions = [ (0, 0, half_width, half_height), # Top-left quadrant (half_width, 0, width, half_height), # Top-right quadrant (0, half_height, half_width, height), # Bottom-left quadrant (half_width, half_height, width, height) # Bottom-right quadrant ] return regions ``` 上述代码片段展示了一个简单的函数 `generate_regions` ,它接受一幅输入图像数组作为参数,并返回四个矩形区域的位置元组形式表示。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值