PCA(主成分分析)降维,SVD分解

PCA降维,SVD分解和LDA

PCA
SVD

PCA(主成分分析)

在机器学习中,每一种性质代表一个特征,这样的话就很容易出现维数灾难现象。这时候我们就会用到降维的技术。

先讲一下基础的PCA降维吧。

PCA降维用一句话来说就是把原来高维的点投影到低维的区域。(至于图片自己YY吧,我就懒得找了)

那么该怎么做呢?

其实我们日常的直角坐标系不就是PCA降维的特例呢,不过是我们初中老师教的时候只告诉你记住就行,所以你也没想他是怎么来的。

见下图(A向量投影到B向量上)。那么数学公式怎么表达呢?
A = ( x 1 , y 1 ) , B = ( x 2 , y 2 ) A ⋅ B = ∣ A ∣ ∣ B ∣ cos ⁡ ( α ) A=\left(x_{1}, y_{1}\right), \quad B=\left(x_{2}, y_{2}\right) A \cdot B=|A||B| \cos (\alpha) A=(x1,y1),B=(x2,y2)AB=ABcos(α)
也就是A,B的内积,假如B的模长是1的话,那么结果就是|A|cosα,这也可以看作是内积的一种几何解释了。

在这里插入图片描述
看到这里相信悟性好的同学就知道我们接下来的做法了。

没错就是找到一组跟B一样的基向量,把类似A的目标向量投影到B上面。再扩展到高维就是把N维向量投影到M维向量上。

那么什么样的基向量才是最好的呢?根据 我们直观的感受,在降维以后各个向量之间离散度最大的基向量才是最好的(因为离散度小会有一部分向量点重叠,这样的话就会丢失信息)。那么离散度怎么衡量呢?均方差或者交叉熵呗,我们以均方差为例讲解。

方差:
在这里插入图片描述
协方差(用来表示高维的离散度)
在这里插入图片描述
协方差矩阵

假设我们只有 a 和 b 两个变量,那么我们将它们按行组成矩阵 X:
在这里插入图片描述
然后:
在这里插入图片描述
结论:
设我们有 m 个 n 维数据记录,将其排列成矩阵 X n , m X_{n, m} Xn,m,设 C = 1 m X X T C=\frac{1}{m} X X^{T} C=m1XXT,则 C 是一个对称矩阵,其对角线分别对应各个变量的方差,而第 i 行 j 列和 j 行 i 列元素相同,表示 i 和 j 两个变量的协方差。

矩阵对角化
根据我们的优化条件,我们需要将除对角线外的其它元素化为 0,并且在对角线上将元素按大小从上到下排列(变量方差尽可能大),这样我们就达到了优化目的。这样说可能还不是很明晰,我们进一步看下原矩阵与基变换后矩阵协方差矩阵的关系。

设原始数据矩阵 X 对应的协方差矩阵为 C,而 P 是一组基按行组成的矩阵,设 Y=PX,则 Y 为 X 对 P 做基变换后的数据。设 Y 的协方差矩阵为 D,我们推导一下 D 与 C 的关系:
在这里插入图片描述

看到这里应该很熟悉,不就是特征矩阵么。我们的求解就是P矩阵也就是特征向量矩阵。

所以求解PCA的步骤是:
设有 m 条 n 维数据。

1、将原始数据按列组成 n 行 m 列矩阵 X;
2、将 X 的每一行进行零均值化,即减去这一行的均值;
3、求出协方差矩阵 C = 1 m X X ⊤ C=\frac{1}{m} X X^{\top} C=m1XX
4、求出协方差矩阵的特征值及对应的特征向量;
5、将特征向量按对应特征值大小从上到下按行排列成矩阵,取前 k 行组成矩阵 P;
6、 Y = P X Y=P X Y=PX 即为降维到 k 维后的数据。

看到这里PCA就基本讲完了,那么PCA有什么问题呢?计算量太大了,协方差矩阵哎,你要是求过你就会知道。。。那么SVD就该闪亮登场了!!!

SVD(奇异值分解)

SVD的出现解决了PCA降维的最大痛点-----计算量大。看到这里,你一定知道了,那肯定是数学技巧上的革新了,没错!!!

首先看SVD的公式: A = U Σ V T A=U \Sigma V^{T} A=UΣVT其中U是一个 mxm的矩阵,Σ 是一个 mxn的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个nxn 的矩阵。U和 V都是酉矩阵,即满足 U T U = I , V T V = I U^{T} U=I, V^{T} V=I UTU=I,VTV=I 。下图可以很形象的看出上面SVD的定义:
在这里插入图片描述
接下来的任务就是求出这三个矩阵!
下面就是数学的魅力了。A左乘A的转置是一个方阵,所以必可以特征分解。
( A T A ) v i = λ i v i \left(A^{T} A\right) v_{i}=\lambda_{i} v_{i} (ATA)vi=λivi
那么:
( A A T ) u i = λ i u i \left(A A^{T}\right) u_{i}=\lambda_{i} u_{i} (AAT)ui=λiui
所以这时候U跟V就求出来了(A是mxn的矩阵,那么 ( A T A ) \left(A^{T} A\right) (ATA)就是nxn的矩阵,所以 v i v_{i} vi就是V矩阵,同理 u i u_{i} ui就是U矩阵。)

具体证明一下:
A = U Σ V T ⇒ A T = V Σ U T ⇒ A T A = V Σ U T U Σ V T = V Σ 2 V T A=U \Sigma V^{T} \Rightarrow A^{T}=V \Sigma U^{T} \Rightarrow A^{T} A=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T} A=UΣVTAT=VΣUTATA=VΣUTUΣVT=VΣ2VT

那么我们只需要求出Σ矩阵就大功告成了!
其实上式已经给出Σ矩阵的解了,因为Σ矩阵出了对角线都为0,而Σ的平方是
( A T A ) \left(A^{T} A\right) (ATA)的特征值,所以 σ i = λ i ‾ \sigma_{i}=\sqrt{\overline{\lambda_{i}}} σi=λi .

来个具体的例子:
A = ( 0 1 1 1 1 0 ) \mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right) A=011110
那么:
A T A = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 2 1 1 2 ) A A T = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 1 1 0 1 2 1 0 1 1 ) \begin{array}{c}\mathbf{A}^{\mathbf{T}} \mathbf{A}=\left(\begin{array}{rrr}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)\left(\begin{array}{rr}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{rr}2 & 1 \\ 1 & 2\end{array}\right) \\ \mathbf{A A}^{\mathbf{T}}=\left(\begin{array}{rr}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{rrr}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)=\left(\begin{array}{rrr}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right)\end{array} ATA=(011110)011110=(2112)AAT=011110(011110)=110121011

然后求出 A T A A^{T} A ATA的特征向量:

λ 1 = 3 ; v 1 = ( 1 / 2 1 / 2 ) ; λ 2 = 1 ; v 2 = ( − 1 / 2 1 / 2 ) \lambda_{1}=3 ; v_{1}=\left(\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right) ; \lambda_{2}=1 ; v_{2}=\left(\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right) λ1=3;v1=(1/2 1/2 );λ2=1;v2=(1/2 1/2 )

求出 A A T AA^{T} AAT的特征向量:

λ 1 = 3 ; u 1 = ( 1 / 6 2 / 6 1 / 6 ) ; λ 2 = 1 ; u 2 = ( 1 / 2 0 − 1 / 2 ) ; λ 3 = 0 ; u 3 = ( 1 / 3 − 1 / 3 1 / 3 ) \lambda_{1}=3 ; u_{1}=\left(\begin{array}{c}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right) ; \lambda_{2}=1 ; u_{2}=\left(\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right) ; \lambda_{3}=0 ; u_{3}=\left(\begin{array}{c}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right) λ1=3;u1=1/6 2/6 1/6 ;λ2=1;u2=1/2 01/2 ;λ3=0;u3=1/3 1/3 1/3

根据 σ i = λ i \sigma_{i}=\sqrt{\lambda_{i}} σi=λi 求出特征值为 3 \sqrt{3} 3 和1。

所以最后有:
A = U Σ V T = ( 1 / 6 1 / 2 1 / 3 2 / 6 0 − 1 / 3 1 / 6 − 1 / 2 1 / 3 ) ( 3 0 0 1 0 0 ) ( 1 / 2 1 / 2 − 1 / 2 1 / 2 ) A=U \Sigma V^{T}=\left(\begin{array}{ccc}1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\ 2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\ 1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3}\end{array}\right)\left(\begin{array}{cc}\sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right) A=UΣVT=1/6 2/6 1/6 1/2 01/2 1/3 1/3 1/3 3 00010(1/2 1/2 1/2 1/2 )

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值