1、PCA(主成分分析)
无监督的,选择的是投影后数据方差最大的方向。因此PCA假设方差越大,代表的信息量越大,使用主成分来表示原始数据可以去除冗余的维度,达到降维的目的。
2、LDA(线性判别分析)
有监督的,选择的是投影后类内方差小、类间方差大的方向。用到了类别标签信息,为了找到数据中具有判别性的维度,使原始数据在这些方向上投影后,不同类别尽可能区分开来。
例如:语音设别中,如果想从音频中提取某人的语音信号,可以使用PCA进行降维,来过滤掉一些固定频率(方差相对较小)的背景噪声。但如果需要从这段音频中识别出声音属于哪个人的,就需要使用LDA对数据进行降维,使每个人的语音信号具有区分性。