PCA与LDA两种降维方法原理的简要对比

1、PCA(主成分分析)

无监督的,选择的是投影后数据方差最大的方向。因此PCA假设方差越大,代表的信息量越大,使用主成分来表示原始数据可以去除冗余的维度,达到降维的目的。

2、LDA(线性判别分析)

有监督的,选择的是投影后类内方差小、类间方差大的方向。用到了类别标签信息,为了找到数据中具有判别性的维度,使原始数据在这些方向上投影后,不同类别尽可能区分开来。

 

例如:语音设别中,如果想从音频中提取某人的语音信号,可以使用PCA进行降维,来过滤掉一些固定频率(方差相对较小)的背景噪声。但如果需要从这段音频中识别出声音属于哪个人的,就需要使用LDA对数据进行降维,使每个人的语音信号具有区分性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值