多边形裁剪二:Weiler-Atherton算法

WeilerAtherton任意多边形裁剪

  SutherlandHodgeman算法解决了裁剪窗口为凸多边形窗口的问题,但一些应用需要涉及任意多边形窗口(含凹多边形窗口)的裁剪。Weiler-Atherton多边形裁剪算法正是满足这种要求的算法。

 

WeilerAtherton任意多边形裁剪算法描述

  在算法中,裁剪窗口、被裁剪多边形可以是任意多边形:凸的、凹的(内角大于180o)、甚至是带有内环的(子区),见下图。

  裁剪窗口和被裁剪多边形处于完全对等的地位,这里我们称:

  1、被裁剪多边形为主多边形,记为A

  2、裁剪窗口为裁剪多边形,记为B

  主多边形A和裁剪多边形B的边界将整个二维平面分成了四个区域:
  1AB(交:属于A且属于B); 
  2AB(差:属于A不属于B);
  3BA(差:属于B不属于A);
  4AB(并:属于A或属于B,取反;即:不属于A且不属于B)

  内裁剪即通常意义上的裁剪,取图元位于窗口之内的部分,结果为AB

  外裁剪取图元位于窗口之外的部分,结果为AB

  观察下图不难发现裁剪结果区域的边界由被裁剪多 边形的部分边界和裁剪窗口的部分边界两部分构成,并且在交点处边界发生交替,即由被裁剪多边形的边界转至裁剪窗口的边界,或者反之。由于多边形构成一个封闭的区域,所以,如果被裁剪多边形和裁剪窗口有交点,则交点成对出现。这些交点分成两类:

  一类称点,即被裁剪多边形由此点进入裁剪窗口,如图中ace
  一类称点,即被裁剪多边形由此点离开裁剪窗口,如图中bdf

                

 

WeilerAtherton任意多边形裁剪算法思想:

  假设被裁剪多边形和裁剪窗口的顶点序列都按顺时针方向排列。当两个多边形相交时,交点必然成对出现,其中一个是从被裁剪多边形进入裁剪窗口的交点,称为入点,另一个是从被裁剪多边形离开裁剪窗口的交点,称为出点

  算法从被裁剪多边形的一个入点开始,碰到入点,沿着被裁剪多边形按顺时针方向搜集顶点序列;

  而当遇到出点时,则沿着裁剪窗口按顺时针方向搜集顶点序列。

  按上述规则,如此交替地沿着两个多边形的边线行进,直到回到起始点。这时,收集到的全部顶点序列就是裁剪所得的一个多边形。

  由于可能存在分裂的多边形,因此算法要考虑:将搜集过的入点的入点记号删去,以免重复跟踪。将所有的入点搜集完毕后算法结束。

 

三、WeilerAtherton任意多边形裁剪算法步骤:

  1、顺时针输入被裁剪多边形顶点序列Ⅰ放入数组1中。

  2、顺时针输入裁剪窗口顶点序列Ⅱ放入数组2中。

  3、求出被裁剪多边形和裁剪窗口相交的所有交点,并给每个交点打上标记。

    然后将交点按顺序插入序列Ⅰ得到新的顶点序列Ⅲ,并放入数组3中;

    同样也将交点按顺序插入序列Ⅱ得到新的顶点序列Ⅳ,放入数组4中;

  4、初始化输出数组Q,令数组Q为空。接着从数组3中寻找点。

    如果点没找到,程序结束。

  5、如果找到点,则将点放入S中暂存。

  6、将点录入到输出数组Q中。并从数组3中将该点的点标记删去。

  7、沿数组3顺序取顶点:

    如果顶点不是出点,则将顶点录入到输出数组Q中,流程转第7步。
    否则,流程转第8步。

  8、沿数组4顺序取顶点:

    如果顶点不是入点,则将顶点录入到输出数组Q中,流程转第8步。
    否则,流程转第9步。

  9、如果顶点不等于起始点S,流程转第6步,继续跟踪数组3

    否则,将数组Q输出;

    流程转第4步,寻找可能存在的分裂多边形。

    算法在第4步:满足点没找到的条件时,算法结束。算法的生成过程见下图所示。

 

 

四、WeilerAtherton任意多边形裁剪算法特点:

  1、裁剪窗口可以是矩形、任意凸多边形、任意凹多边形。

  2、可实现被裁剪多边形相对裁剪窗口的内裁或外裁,即保留窗口内的图形或保留窗口外的图形,因此在三维消隐中可以用来处理物体表面间的相互遮挡关系。

  3、裁剪思想新颖,方法简洁,裁剪一次完成,与裁剪窗口的边数无关。

 

五、WeilerAtherton任意多边形裁剪算法小结:

  前面介绍的是内裁算法,即保留裁剪窗口内的图形。而外裁算法(保留裁剪窗口外的图形)同内裁算法差不多。

  外裁算法与内裁算法不同的是:

  1、从被裁剪多边形的一个出点开始,碰到出点,沿着被裁剪多边形按顺时针方向搜集顶点序列;

  2、而当遇到入点时,则沿着裁剪窗口按逆时针方向搜集顶点序列。

  按上述规则,如此交替地沿着两个多边形的边线行进,直到回到起始点为止。这时,收集到的全部顶点序列就是裁剪所得的一个多边形。

  由于可能存在分裂的多边形,因此算法要考虑:将搜集过的出点的出点记号删去,以免重复跟踪。将所有的出点搜集完毕后算法结束。

  WeilerAtherton算法的的设计思想很巧妙,裁剪是一次完成,不象Sutherland-Hodgman多边形裁剪算法,每次只对裁剪窗口的一条边界及其延长线进行裁剪,如裁剪窗口有n条边,则要调用nS-H算法后才能最后得出裁剪结果。

  但WeilerAtherton算法的编程实现比Sutherland-Hodgman算法稍难,主要难在入、出点的查寻以及跨数组搜索上。

 

六、未测试的代码(正确代码见以后更新)

 

 

阅读更多
个人分类: 图像处理
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭