前言
卷积神经网络的设计自然要考虑到各层之间的顺序。这种“考虑”既有原理性的解释也有经验方面的原因。本文主要介绍一些层常见的位置选择,并对其原因进行分析,从中提取共性有利于其他模型的设计。
Dropout层的位置
Dropout一般放在全连接层防止过拟合,提高模型返回能力,由于卷积层参数较少,很少有放在卷积层后面的情况,卷积层一般使用batch norm。
全连接层中一般放在激活函数层之后,有的帖子说一定放在激活函数后,个人推测是因为对于部分激活函数输入为0输出不一定为0,可能会起不到效果,不过对于relu输入0输出也是0就无所谓了。
BatchNorm
BatchNorm归一化放在激活层前后好像都有,最初LeNet有一种归一化放在了激活层池化层后面,而现在普遍放在激活层前。
bn原文建议放在ReLU前,因为ReLU的激活函数输出非负,不能近似为高斯分布。但有人做了实验,发现影响不大,放在后面好像还好了一点,放在ReLU后相当于直接对每层的输入进行归一化,如下图所示,这与浅层模型的Standardization是一致的。
所以在激活层前还是后还是很难下定论的,只是现在习惯放在激活层前,区别不是很大,区别大的是是否使用bn。
这里做了很多实验,可以参考:https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md
转载自:https://www.cnblogs.com/lvdongjie/p/14088464.html