【深度学习】卷积神经网络中Dropout、BatchNorm的位置选择

本文探讨卷积神经网络中Dropout层和BatchNorm层的常见位置选择及其原理。Dropout层通常位于全连接层之后以防止过拟合;BatchNorm层则因激活函数特性而置于ReLU激活层之前或之后。
摘要由CSDN通过智能技术生成

前言

卷积神经网络的设计自然要考虑到各层之间的顺序。这种“考虑”既有原理性的解释也有经验方面的原因。本文主要介绍一些层常见的位置选择,并对其原因进行分析,从中提取共性有利于其他模型的设计。

Dropout层的位置

Dropout一般放在全连接层防止过拟合,提高模型返回能力,由于卷积层参数较少,很少有放在卷积层后面的情况,卷积层一般使用batch norm。
全连接层中一般放在激活函数层之后,有的帖子说一定放在激活函数后,个人推测是因为对于部分激活函数输入为0输出不一定为0,可能会起不到效果,不过对于relu输入0输出也是0就无所谓了。

BatchNorm

BatchNorm归一化放在激活层前后好像都有,最初LeNet有一种归一化放在了激活层池化层后面,而现在普遍放在激活层前。

在这里插入图片描述

bn原文建议放在ReLU前,因为ReLU的激活函数输出非负,不能近似为高斯分布。但有人做了实验,发现影响不大,放在后面好像还好了一点,放在ReLU后相当于直接对每层的输入进行归一化,如下图所示,这与浅层模型的Standardization是一致的。
所以在激活层前还是后还是很难下定论的,只是现在习惯放在激活层前,区别不是很大,区别大的是是否使用bn。

这里做了很多实验,可以参考:https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md

转载自:https://www.cnblogs.com/lvdongjie/p/14088464.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值