Faster R-CNN是当前目标检测领域内性能最好的算法之一,它将RPN(Region Proposal Network)网络和Fast R-CNN网络结合到了一起,实现了一个端到端的目标检测框架。作者Shaoqing Ren在github上公开了源代码,可以很方便地在自己的机器上进行测试。本文记录的是Ubuntu16.04下配置和测试Faster R-CNN的过程,其中包括Caffe的安装和编译过程,针对的是Matlab和仅使用CPU的环境。
文章arXiv链接:
https://arxiv.org/abs/1506.01497
下载源代码
Matlab版源码链接:
https://github.com/ShaoqingRen/faster_rcnn
Python版实现源码:
https://github.com/rbgirshick/py-faster-rcnn
下载上面对应版本的源码faster_rcnn-master.zip以及其中的专门的caffe源码,解压至本地目录。
下载linux版 matlab2014a
链接: https://pan.baidu.com/s/1kVfu7w7 密码:bags
第一步:安装MATLAB
首先解压其中的rar压缩包,得到一个iso文件。
1:sudo mkdir ~/media/MATLAB ,用来挂载.iso文件,就跟windows里的虚拟光驱一样;
2:cd 到iso所在的路径;
3:sudo mount -o loop Matlab2014a.iso ~/media/MATLAB,把iso挂载到刚建的虚拟光驱中;
4:安装
$ cd ~/media/MATLAB
$ sudo ./install
等待安装,安装完成。
5:进行激活,到安装目录下运行
./activate_matlab
选择"install manually without using the internet"项进行安装
输入"破解文件的key文件的秘钥。
选择”license_R2015a.lic”文件进行激活
6:把crack的libmwservices.so复制到安装目录下的 /bin/glnxa64中:
$ sudo cp libmwservices.so ~/media/MATLAB/bin/glnxa64/libmwservices.so
7.使用
cd到安装目录下的bin文件夹,即./matlab运行程序,到此位置matlab已经可以使用,但是我们每次都需要进入安装目录的bin下启动,为了方便起见,可以在左边启动栏装一个matlab快速启动项.
安装后根据提示输入matlab的安装路径,确认即可,用户权限不填,表示所有人都可以用,gcc选否,然后可以在Dash中搜索到matlab。放到启动栏。