组卷积(group Conv)与深度可分离卷积(depthwise)简介

在这里插入图片描述
详细解释:https://zhuanlan.zhihu.com/p/92134485
个人理解:一共分为两步
1.对每个输入通道进行一个卷积,有几个通道就几个1kk的卷积平面,通道之间没有任何沟通。
2.类似全连接的手段将每个通道卷积后的特征图们关联起来。

计算量:Cin=3,Cou=2,输入特征图33大小。k=3
原来:3
332=54
深度可分离:333+1132=33
3
33(第一步)+1132(第二步)

组卷积:(最早见于AlexNet——2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行)
把channel分为多组,一个卷积核不需要对所有通道的特征图进行卷积,仅仅对本组内的通道特征进行卷积。
当每组中仅有一个通道特征时,即为深度卷积。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Depthwise Conv2d是一种深度分离操作。与传统的卷操作不同,Depthwise Conv2d首先对输入的每个通道进行单独的卷操作,得到一组特征图。然后,这些特征图通过逐通道求和的方式进行合并,得到最终的输出特征图。 与传统的Conv2d操作相比,Depthwise Conv2d具有以下几个不同之处: 1. 参数数量:Depthwise Conv2d拥有更少的参数数量。因为它对每个输入通道使用单独的卷核,而不是对所有通道共享一个卷核。这降低了参数的数量,减少了计算量。 2. 计算效率:由于Depthwise Conv2d对每个通道进行单独的卷操作,可以并行地进行计算,提高了计算效率。这对于移动设备等资源受限的环境尤为重要。 3. 模型大小:由于参数数量的减少,使用Depthwise Conv2d可以减小模型的大小。这在资源受限的情况下非常有用,例如移动设备上的深度学习模型部署。 4. 特征表示能力:Depthwise Conv2d在提取特征时,可以更好地保留输入数据的细节。因为它对每个通道进行独立卷,不会将不同通道之间的信息混合起来。这对于某些任务,如图像分割等,可能会有更好的性能表现。 综上所述,Depthwise Conv2d与传统的Conv2d在卷操作的方式上有所不同,它采用深度分离的方式,减少了参数数量和计算量,提高了计算效率,同时保留了输入数据的细节。这使得它在资源受限的环境下应用广泛,并且在一些任务中可能具有更好的性能表现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值