机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法

本文探讨机器学习中关于标量对向量、矩阵求导及向量对向量的求导方法,通过定义法解析示例,包括标量对向量求导的基本法则,以及标量对矩阵和向量对向量的求导应用,指出定义法在复杂求导问题上的局限性。
摘要由CSDN通过智能技术生成

机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念。今天我们就讨论下其中的标量对向量求导,标量对矩阵求导, 以及向量对向量求导这三种场景的基本求解思路。

对于本文中的标量对向量或矩阵求导这两种情况,如前文所说,以分母布局为默认布局。向量对向量求导,以分子布局为默认布局。如遇到其他文章中的求导结果和本文不同,请先确认使用的求导布局是否一样。另外,由于机器学习中向量或矩阵对标量求导的场景很少见,本系列不会单独讨论这两种求导过程。

1. 用定义法求解标量对向量求导

标量对向量求导,严格来说是实值函数对向量的求导。即定义实值函数f:Rn →R,自变量x是n维向量,而输出y是标量。对于一个给定的实值函数,如何求解 ∂ y ∂ x \frac{\partial{y}}{\partial{\boldsymbol{x}}} xy呢?

首先我们想到的是基于矩阵求导的定义来做,由于所谓标量对向量的求导,其实就是标量对向量里的每个分量分别求导,最后把求导的结果排列在一起,按一个向量表示而已。那么我们可以将实值函数对向量的每一个分量来求导,最后找到规律,得到求导的结果向量。

首先我们来看一个简单的例子: y = a T x y=\mathbf{a}^{T}\mathbf{x} y=aTx,求解 ∂ a T x ∂ x \frac{\partial{\mathbf{a}^{T}\mathbf{x}}}{\partial{\mathbf{x}}} xaTx

据定义,我们先对x的第i个分量进行求导,这是一个标量对标量的求导,如下:
∂ a T x ∂ x i = ∂ ∑ j = 1 n a j x j ∂ x i = ∂ a i x i ∂ x i = a i \begin{aligned} \frac{\partial \mathbf{a}^T\mathbf{x}}{\partial x_i} = \frac{\partial \sum\limits_{j=1}^n a_jx_j}{\partial x_i} = \frac{\partial a_ix_i}{\partial x_i} =a_i \end{aligned} xiaTx=xij=1najxj=xiaixi=ai

可见,对向量的第i个分量的求导结果就等于向量a的第i个分量。由于我们是分母布局,最后所有求导结果的分量组成的是一个n维向量。那么其实就是向量a。也就是说:
∂ a T x ∂ x = a \begin{aligned} \frac{\partial \mathbf{a}^T\mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \end{aligned} xaTx=a

同样的思路,我们也可以直接得到:
∂ x T a ∂ x = a \begin{aligned} \frac{\partial \mathbf{x}^T\mathbf{a}}{\partial \mathbf{x}} = \mathbf{a} \end{aligned} xxTa

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值