一、 博弈论的基本原理 ① 参与者是理性的(认知理性和工具理性,每个人对理性的定义不一样) ② 博弈的结构是所有参与者的共同知识(默认所有博弈者了解所有博弈规则,且大家都知道其他人也知道所有博弈规则) ③ 所有参与者都具有“完美记忆”(不会忘记自己和其他博弈者之前的所有行动)
二、合作博弈论与非合作博弈论 关键在于是否有第三方能够干预合作双方的博弈,如果有则为合作博弈,如果没有则为非合作博弈。(可以想象下,没有人能干预自己和对方的博弈,那么双方之间的任何协议都可以不作数;反之,有能干预的,法律就是最直接的表现,外在强制威慑) 例子:谈判在签字之前都是非合作博弈,签字之后就是合作博弈 非合作博弈: ① 分类:静态博弈、动态博弈 ② 举例:法律缺失、协议违法、执法不严
三、效用理论 期望效用定理: ① 对于结果偏好排序满足完备性和传递性(整个事件的结果有n中,C1PC2P···PCN)P表示强偏好。(意思是做出这个决策有N种可能,不会有多的,就是完备,若参与者对C1偏好于C2,对C2偏好于C3,则对C1偏好于C3这便是传递性) ② 复合抽奖可以简化成简单抽奖(用博弈树就是多层用一个等式表示) ③ 对于每个结果Ci,存在一个只设计C1和CN的抽奖,满足Ci和对决策者是无差别的 例子:一个事件有两个选择A,B,选择A的效用为280,选择B有两种可能,0.1的概率效用是3000,0.9的概率效用是0,那么决策者选择B。这里的重点是效用二字,效用是考虑了实际收益以及各种概率后得到的最终值,如果280,0,3000表示实际收益,作为风险厌恶者肯定选择A而不是B; 同样的若红点是线段AD和BC的重点也是两者的交点,若效用有L1:1/2(A+D),L2:1/2(B+C),那么选择两种都一样
博弈的扩展型表述: ① 参与者(要知道有哪些参与者) ② 参与者何时行动(每个参与者的顺序是什么) ③ 轮到参与者行动时有哪些方案可以选择 ④ 轮到参与者行动时参与者有哪些已知信息 ⑤ 对应于参与者可能选择的每一行动组合,各个参与者的收益
博弈的策略型表述: ① 参与者(要知道有哪些参与者) ② 每个参与者可供选择的策略集 ③ 针对所有参与者可能选择的策略组合,每个参与者获得的收益(即收益函数)