博弈论自学(二)

一、 博弈论的基本原理
       ① 参与者是理性的(认知理性和工具理性,每个人对理性的定义不一样)
       ② 博弈的结构是所有参与者的共同知识(默认所有博弈者了解所有博弈规则,且大家都知道其他人也知道所有博弈规则)
       ③ 所有参与者都具有“完美记忆”(不会忘记自己和其他博弈者之前的所有行动)

二、合作博弈论与非合作博弈论
       关键在于是否有第三方能够干预合作双方的博弈,如果有则为合作博弈,如果没有则为非合作博弈。(可以想象下,没有人能干预自己和对方的博弈,那么双方之间的任何协议都可以不作数;反之,有能干预的,法律就是最直接的表现,外在强制威慑)
      例子:谈判在签字之前都是非合作博弈,签字之后就是合作博弈
      非合作博弈:
       ① 分类:静态博弈、动态博弈
       ② 举例:法律缺失、协议违法、执法不严

三、效用理论
       期望效用定理:
       ① 对于结果偏好排序满足完备性和传递性(整个事件的结果有n中,C1PC2P···PCN)P表示强偏好。(意思是做出这个决策有N种可能,不会有多的,就是完备,若参与者对C1偏好于C2,对C2偏好于C3,则对C1偏好于C3这便是传递性)
       ② 复合抽奖可以简化成简单抽奖(用博弈树就是多层用一个等式表示)
       ③ 对于每个结果Ci,存在一个只设计C1和CN的抽奖\widetilde{Ci},满足Ci和\widetilde{Ci}对决策者是无差别的
      例子:一个事件有两个选择A,B,选择A的效用为280,选择B有两种可能,0.1的概率效用是3000,0.9的概率效用是0,那么决策者选择B。这里的重点是效用二字,效用是考虑了实际收益以及各种概率后得到的最终值,如果280,0,3000表示实际收益,作为风险厌恶者肯定选择A而不是B;
       同样的若红点是线段AD和BC的重点也是两者的交点,若效用有L1:1/2(A+D),L2:1/2(B+C),那么选择两种都一样
      

      博弈的扩展型表述:
      ① 参与者(要知道有哪些参与者)
      ② 参与者何时行动(每个参与者的顺序是什么)
      ③ 轮到参与者行动时有哪些方案可以选择
      ④ 轮到参与者行动时参与者有哪些已知信息
      ⑤ 对应于参与者可能选择的每一行动组合,各个参与者的收益

      博弈的策略型表述:
      ① 参与者(要知道有哪些参与者)
      ② 每个参与者可供选择的策略集
      ③ 针对所有参与者可能选择的策略组合,每个参与者获得的收益(即收益函数)

博弈树:略(画图的部分,懒~)
      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值