论文 A-fast-RCNN

对抗网络之目标检测应用:A-Fast-RCNN
论文连接
caffee代码

1)Easy example 和Hard example的基本概念:

Easy Example:
直观上来讲,太易于识别的样本对于训练来讲意义并不太大,有一部分就够了,因为太明显了嘛,大家都认识;
Hard Example:
比较难以区别的样本,比如目标在 变形、遮挡、逆光 等情况下的 Performance,别人不说你无法识别的那种。
样本挖掘 通常是找出样本中的 Hard Examples,典型的论文就是OHME

2)OHME简介

传统机器学习中训练 SVM 的时候,通过初始的分类器进行分类(检测)测试,得到的误报即称为 Hard Example,将其加入到训练样本中,重新训练分类器,这种方法称为 Bootstrap(自举)
OHEM 就是 BootStrap 方法在深度卷积网络中的应用。
OHME的网络架构如下
这是基于 Fast RCNN 的结构进行改造的,卷积网络的上半部分是 Fast RCNN 的网络。修改加工的地方在于:
1)添加了一个 Hard ROI Sampler,用于挖掘 Loss 比较大的 Proposal;
2)为了加快速度,复制了一个 ROINet,两个子网络-图中 (a)和(b)共享参数;

  • 只做正向传播 forward,标注为 Read-only;
  • 根据 Sampler 传回的结果(hard examples),同时进行正反向传播 - 红色部分。

    与原网络的差异在于 通过 Sampler 对 Loss 结果进行排序,将Loss最大的 k个作为 Hard Examples,进行误差回传,这样做的意义在于充分利用了 Hard Examples,增加了网络的辨识度。


步入正题:
针对目标检测问题,当前学术界主要从三个思路进行探索:
1) 设计更好的网络架构来提升性能,主要是使用更深的网络结构,例如 ResNet,Inception-ResNet ,ResNetXt
2) 使用 contextual reasoning,充分利用各个卷积层的特征。比如segmentation 和 skip-network
3) 充分利用数据来提升性能,例如 hard example mining
本文采用的是第三种方式进行改进,使用对抗网络来生成一些hard examples,用这些hard examples来训练检测网络 以提升detector的性能。

本文的目的是通过adversarial network生成一些 hard examples(难分样本),然后将这些难分样本丢进Fast R-CNN detector中,最终Fast R-CNN detector错分了这些hard examples。

将对抗学习和Fast R-CNN结合,来增加 遮挡和变形 的物体的数量,这种做法可行性在于:

  1. 实际样本中可能这种情况比较少;
  2. 现实搜集的样本仅包含部分场景,很难 cover 多数的遮挡和变形情况;

作者提到一个(long-tail)长尾效应,20%的场景在80%的情况下不会出现:
长尾效应

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jxy0123456789/article/details/80690503
个人分类: 计算机视觉论文
上一篇如何学习区块链技术?
下一篇论文 Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭