振动力学学习笔记: 绪论(一) 振动力学的基本概念

文章详细介绍了振动的不同分类,包括按激励特性、物理特性、周期、系统自由度和位移特征的分类,并阐述了基本的振动概念如位移、响应和激励。线性振动、非线性振动、周期振动和非周期振动是主要讨论的类型,同时提到了自由振动、受迫振动和自激振动的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本变量与名词解释

振动 (vibration) /机械振动 (mechanical vibration) 物体围绕某一平衡位置所作的往复运动

位移 (displacement) x = x ( t ) x=x(t) x=x(t)

位移时程曲线 (time history curve of displacement) 时间 t t t 为横坐标,位移 x x x 为纵坐标的曲线

振动系统 (vibration system) 的基本要素

  • 惯性元件(质量,二阶微分)
  • 阻尼元件(一阶微分)
  • 弹性元件(弹簧)

激励 (excitation) 振动系统受到的外界作用 (可以是力、位移、速度、加速度)

响应 (response) 振动系统在激励作用下产生的运动及其状态 (可以用位移、速度、加速度等运动参数描述,也可以用内力和能量表示)

初始条件 (initial conditions) 振动系统在在运动初始时刻 ( t = 0 t=0 t=0 时) 的状态 (可以是位移、速度、加速度等)

振动的分类

按激励特性分类

确定性振动 (deterministic vibration)

  • 确定的系统、确定 (指可以用时变函数描述) 的激励
  • 确定的响应
  • 用经典力学理论分析

随机振动 (random vibration)

  • 随机 (指无法用时变函数描述) 的激励
  • 随机的响应
  • 无法预测但具有统计规律,用概率统计理论分析

按振动系统的物理特性分类

线性振动 (linear vibration)

  • 线性系统 惯性力与加速度成正比 (质量为常数),阻尼力与速度成正比 (阻尼系数为常数),弹性恢复力与位移成正比 (弹簧劲度系数为常数)
  • 常系数线性微分方程描述

非线性振动 (nonlinear vibration)

  • 非线性系统 质量、阻尼力或弹性恢复力具有非线性性质
  • 非线性微分方程描述

按振动的周期分类

周期振动 (periodic vibration)
x = x ( t ) = x ( t + n T ) , n = 1 , 2 , 3 , … (1) x=x(t)=x(t+nT), n=1,2,3,…\tag{1} x=x(t)=x(t+nT),n=1,2,3,(1)

  • 周期 T T T 物体完成一次振动所需的时间
  • 频率 f = 1 / T f=1/T f=1/T 单位时间内周期振动的次数

其中,简谐振动 (simple vibration)
x ( t ) = X cos ⁡ ( ω t + φ 0 ) (2) x(t)=X\cos(\omega t+\varphi_0)\tag{2} x(t)=Xcos(ωt+φ0)(2)

  • 振幅 X X X 振动物体离开静平衡位置的最大距离
  • 圆频率 ω = 2 π / T \omega=2\pi/T ω=2π/T 设想一个矢量以角速度 ω \omega ω 绕圆周旋转,每旋转一周占用周期 T T T
  • 相位角 φ = ω t + φ 0 \varphi=\omega t+\varphi_0 φ=ωt+φ0 T T T 时刻矢量旋转的角度
  • 初相位角 φ 0 \varphi_0 φ0 t = 0 t=0 t=0 时刻的相位角
  • 任何周期振动都可以分解为不同阶次简谐振动的叠加运动

非周期振动 (nonperiodic vibration)

  • 系统的物理量不随时间作周期性的变化
  • 大多数振动都是非周期的,比如瞬态振动

按激励类型分类

自由振动 (free vibration)

  • 系统受到初始激励后不再受激励作用
  • 自由振动的特性仅取决于系统本身的质量、刚度、阻尼等固有特性

受迫振动/强迫振动 (forced vibration)

  • 系统在外界持续激振作用下的振动
  • 受迫振动的特性除取决于系统本身的物理特性外,还与激振力的特性有关

自激振动 (self-excited vibration)

  • 系统受到激励,但所受激励受到振动系统本身的控制
  • 在适当的反馈下,系统将自动激起稳定的振动;系统的振动被抑制,激励也随之消失

按振动系统的自由度数目分类

单自由度系统 (systems with one degree of freedom) 的振动

  • 系统的位置只需要一个独立坐标就能描述

多自由度系统 (systems with multiple degrees of freedom) 的振动

  • 系统的位置需要多个独立坐标来描述

无限多自由度系统 (systems with infinite degrees of freedom) / 连续体系统 (continuous system) 的振动

  • 系统的几何位置需要无限多个独立坐标来确定

按振动位移的特征分类

纵向振动 沿振动体轴线方向发生位移的振动

横向振动 垂直于振动体轴线方向发生位移的振动

扭转振动 绕振动体轴线方向发生扭转位移的振动

摆角振动 绕垂直于振动体轴线在平衡位置附近作弧线摆动的振动

参考文献

[1] 鲍文博,白泉,陆海燕.振动力学基础与MATLAB应用[M].北京:清华大学出版社,2015:4~5.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值