python-opencv提取复杂背景下的文字

简要说明我的思路:

1.我的图片比较小,先放大图片。

2.灰度处理。

3.找到一个区间值,对初步提取的文字进行膨胀及二次膨胀取轮廓。

4。获取到的轮廓面积,因为我这里是固定的取图片里4个文字,所以我对比取轮廓面积最大的4个

4.最后获取轮廓的矩形坐标点,采用透视变换生成字体图片

最后还有一些优化的地方

提取代码:

import cv2
import numpy as np

im = cv2.imread(r"fone\\5.png")
cv2.imshow('ceshi2',im)
#放大图片2.5倍
im = cv2.resize(im,None,fx=2.5,fy=2.5,interpolation=cv2.INTER_CUBIC)
im_gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
retval,grayfirst = cv2.threshold(im, 131, 255, cv2.THRESH_BINARY)

#膨胀
element = cv2.getStructuringElement(cv2.MORPH_RECT,(15,8))
gray = cv2.dilate(grayfirst, element)

#再次膨胀,轮廓查找
img=cv2.GaussianBlur(gray,(3,3),0, 0)
element = cv2.getStructuringElement(cv2.MORPH_RECT,(20,20))
img=cv2.dilate(img, element)
img=cv2.Canny(img, 30, 10, 3)
#cv2.imshow('ceshi',img)
_, contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#cv2.drawContours(img, contours, -1,(255,255,255), 3)
newz=[]
for i,cnt in enumerate(contours):
    tmparea = cv2.contourArea(cnt)
    nlist=(tmparea,i)
    newz.append(nlist)
newz=sorted(newz,reverse=True)
newimg=[]
imgsize=30
#对字体稍加膨胀变得较清晰
element = cv2.getStructuringElement(cv2.MORPH_RECT,(4,4))
grayfont = cv2.dilate(grayfirst, element)

#获取面积最大4个
for i,mz in enumerate(newz[:4]):
    rect = cv2.minAreaRect(contours[mz[1]])
    box = np.int0(cv2.boxPoints(rect))
    newimg.append(box)
    #box=np.array(checkxy(box.tolist()))
    #print(newimg)
    #透视变换
    pts1 = np.float32(box)
    pts2 = np.float32([[0,imgsize],[0,0],[imgsize,0],[imgsize,imgsize]])
    M = cv2.getPerspectiveTransform(pts1 , pts2)
    dst = cv2.warpPerspective(grayfont , M , (imgsize , imgsize))

    cv2.imwrite('test\\m{}.png'.format(i), dst)
cv2.drawContours(grayfont, newimg, -1,(255,255,255), 1)
cv2.imshow('ceshi{}'.format(1), grayfont)
cv2.waitKey(0)

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值