简要说明我的思路:
1.我的图片比较小,先放大图片。
2.灰度处理。
3.找到一个区间值,对初步提取的文字进行膨胀及二次膨胀取轮廓。
4。获取到的轮廓面积,因为我这里是固定的取图片里4个文字,所以我对比取轮廓面积最大的4个
4.最后获取轮廓的矩形坐标点,采用透视变换生成字体图片
最后还有一些优化的地方
提取代码:
import cv2
import numpy as np
im = cv2.imread(r"fone\\5.png")
cv2.imshow('ceshi2',im)
#放大图片2.5倍
im = cv2.resize(im,None,fx=2.5,fy=2.5,interpolation=cv2.INTER_CUBIC)
im_gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
retval,grayfirst = cv2.threshold(im, 131, 255, cv2.THRESH_BINARY)
#膨胀
element = cv2.getStructuringElement(cv2.MORPH_RECT,(15,8))
gray = cv2.dilate(grayfirst, element)
#再次膨胀,轮廓查找
img=cv2.GaussianBlur(gray,(3,3),0, 0)
element = cv2.getStructuringElement(cv2.MORPH_RECT,(20,20))
img=cv2.dilate(img, element)
img=cv2.Canny(img, 30, 10, 3)
#cv2.imshow('ceshi',img)
_, contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#cv2.drawContours(img, contours, -1,(255,255,255), 3)
newz=[]
for i,cnt in enumerate(contours):
tmparea = cv2.contourArea(cnt)
nlist=(tmparea,i)
newz.append(nlist)
newz=sorted(newz,reverse=True)
newimg=[]
imgsize=30
#对字体稍加膨胀变得较清晰
element = cv2.getStructuringElement(cv2.MORPH_RECT,(4,4))
grayfont = cv2.dilate(grayfirst, element)
#获取面积最大4个
for i,mz in enumerate(newz[:4]):
rect = cv2.minAreaRect(contours[mz[1]])
box = np.int0(cv2.boxPoints(rect))
newimg.append(box)
#box=np.array(checkxy(box.tolist()))
#print(newimg)
#透视变换
pts1 = np.float32(box)
pts2 = np.float32([[0,imgsize],[0,0],[imgsize,0],[imgsize,imgsize]])
M = cv2.getPerspectiveTransform(pts1 , pts2)
dst = cv2.warpPerspective(grayfont , M , (imgsize , imgsize))
cv2.imwrite('test\\m{}.png'.format(i), dst)
cv2.drawContours(grayfont, newimg, -1,(255,255,255), 1)
cv2.imshow('ceshi{}'.format(1), grayfont)
cv2.waitKey(0)